scholarly journals Urban Drainage Management and Flood Control Improvement Using the Duflow Case Study: Aur Sub Catchment, Palembang, South Sumatra, Indonesia

2017 ◽  
Vol 21 (2) ◽  
pp. 83
Author(s):  
Harrini Mutiara Hapsari Wahyu
Keyword(s):  
2021 ◽  
Author(s):  
Bidroha Basu ◽  
Arunima Sarkar Basu ◽  
Srikanta Sannigrahi ◽  
Francesco Pilla

<p>Increase in extreme rainfall and storm events due to climate change and decrease in water retention in soil due to urbanization has increased the risk of flooding in cities globally. Since majority of the cites are mostly developed, expanding the conventional urban drainage system to account for the excess runoff produced by the rainfall event has limited scope. The challenge is to develop sustainable urban drainage systems (SUDS) to reduce runoff and create a flood control system in major cities. One of the SUDS that are becoming popular is the use of nature-based solutions (NBSs). A set of conventional NBSs to mitigate flood risk include bioswales, bio-retention, tree pits, infiltration trenches. However, even though their performance in flood control is found to be effective, they require considerable land area for deployment, which might be difficult to obtain in cities. For this purpose, green roofs have becoming popular as an alternative NBS in flood control, as it does not require any additional land area for deployment. This study investigates the effectiveness of a green roof in reduction of runoff via real-world case study. A green roof deployed in the CHQ building located at the city centre in Dublin, Ireland has been considered for the study. The green roof has a total size of 70 sq. m. Performance of the green roof in runoff reduction was measured based on rainfall and water retention data collected at four modular units, each having 1 sq. meter area, located at the centre of the roof with an IoT weight scale. The data has been collected for 1 week at 3-minute interval, and the reduction in runoff with and without the presence of the green roof has been estimated. The performance of the green roofs in runoff reduction was found to vary between 20-40% depending on the intensity of storm events.</p>


Author(s):  
Seiichi Kagaya ◽  
Tetsuya Wada

AbstractIn recent years, it has become popular for some of countries and regions to adapt the system of governance to varied and complex issues concerned with regional development and the environment. Watershed management is possibly the best example of this. It involves flood control, water use management and river environment simultaneously. Therefore, comprehensive watershed-based management should be aimed at balancing those aims. The objectives of this study are to introduce the notion of environmental governance into the planning process, to establish a method for assessing the alternatives and to develop a procedure for determining the most appropriate plan for environmental governance. The planning process here is based on strategic environment assessment (SEA). To verify the hypothetical approach, the middle river basin in the Tokachi River, Japan was selected as a case study. In practice, after workshop discussions, it was found to have the appropriate degree of consensus based on the balance of flood control and environmental protection in the watershed.


10.14311/538 ◽  
2004 ◽  
Vol 44 (2) ◽  
Author(s):  
P. Fošumpaur ◽  
L. Satrapa

A system of reservoirs is usually defined as a system of water management elements, that are mutually linked by inner and outer connections in a purpose-built complex. Combined elements consist of reservoirs, river sections, dams, weirs, hydropower plants, water treatment plants and other hydraulic structures. These elements also include the rainfall system, the run-off system, the ground water system, etc. A system of reservoirs serves many purposes, which result from the basic functions of water reservoirs: storage, flood control and environmental functions. Most reservoirs serve several purposes at the same time. They are so called multi-purposes reservoirs. Optimum design and control of a system of reservoirs depends strongly on identifying the particular purposes. In order to assess these purposes and to evaluate the appropriate set of criteria, risk analysis can be used. Design and control of water reservoir functions is consequently solved with the use of multi-objective optimisation. This paper deals with the use of the risk analysis to determine criteria for controlling the system. This approach is tested on a case study of the Pastviny dam in the Czech Republic.


2021 ◽  
Vol 33 (3) ◽  
pp. 879-892
Author(s):  
Luo Yun ◽  
◽  
Dong Zengchuan ◽  
Liu Yuhuan ◽  
Zhong Dunyu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document