scholarly journals CAUSAL REVERSIBILITY IN INDIVIDUAL TOKEN INTERPRETATION OF PETRI NETS

2020 ◽  
Vol 21 (4) ◽  
Author(s):  
Adel Benamira

Causal reversibility in concurrent systems means that events that the origin of other events can only be undone after undoing of its consequences. In opposite to backtracking, the events which are independent of each other can be reversed in an arbitrary order, in the other words, we have flexible reversibility w.r.t the causality relation. An implementation of Individual token interpretation ofPetri Nets (IPNs) was been proposed by Rob Van Glabbeek et al, the present paper investigates into a study of causal reversibility within IPNs. Given N be an IPN, by adding an intuitive firing rule to undo transitions according to the causality relation, the coherence of N is assured, i.e., the set of all reachable states of N in the reversible version and that of the original one are identical. Furthermore, reversibility in N is flexible and their initial state can be accessible in reverse from any state. In this paper an approach for controllingcausal-reversibility within IPNs is proposed.

1991 ◽  
Vol 02 (04) ◽  
pp. 297-399 ◽  
Author(s):  
NARCISO MARTÍ -OLIET ◽  
JOSÉ MESEGUER

Linear logic has been introduced by Girard as a logic of actions that seems well suited for concurrent computation. This paper surveys recent work on the applications of linear logic to concurrency, with special emphasis on Petri nets and on the use of categorical models. In particular, we present a synthesis of our previous work on the systematic correspondence between Petri nets, linear logic theories, and linear categories, and explain its relationships to work by many other authors. Throughout, we discuss the computational interpretation of the linear logic connectives and illustrate the ideas with examples. Categories play an important role in this survey. On the one hand, from a computational perspective, they are interpreted as concurrent systems whose objects are states, and whose morphisms are transitions; on the other hand, when a model-theoretic perspective is adopted, they provide a very flexible conceptual framework within which the relationships among quite different models already proposed for linear logic can be better understood; this framework also suggests the study of new models and an axiomatic treatment of classes of models. Our categorical semantics for linear logic is based on dualizing objects and permits a very simple presentation of ideas requiring a more complicated treatment in the language of *-autonomous categories.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1134
Author(s):  
Kenta Higuchi ◽  
Takashi Komatsu ◽  
Norio Konno ◽  
Hisashi Morioka ◽  
Etsuo Segawa

We consider the discrete-time quantum walk whose local dynamics is denoted by a common unitary matrix C at the perturbed region {0,1,⋯,M−1} and free at the other positions. We obtain the stationary state with a bounded initial state. The initial state is set so that the perturbed region receives the inflow ωn at time n(|ω|=1). From this expression, we compute the scattering on the surface of −1 and M and also compute the quantity how quantum walker accumulates in the perturbed region; namely, the energy of the quantum walk, in the long time limit. The frequency of the initial state of the influence to the energy is symmetric on the unit circle in the complex plain. We find a discontinuity of the energy with respect to the frequency of the inflow.


1998 ◽  
Vol 08 (01) ◽  
pp. 21-66 ◽  
Author(s):  
W. M. P. VAN DER AALST

Workflow management promises a new solution to an age-old problem: controlling, monitoring, optimizing and supporting business processes. What is new about workflow management is the explicit representation of the business process logic which allows for computerized support. This paper discusses the use of Petri nets in the context of workflow management. Petri nets are an established tool for modeling and analyzing processes. On the one hand, Petri nets can be used as a design language for the specification of complex workflows. On the other hand, Petri net theory provides for powerful analysis techniques which can be used to verify the correctness of workflow procedures. This paper introduces workflow management as an application domain for Petri nets, presents state-of-the-art results with respect to the verification of workflows, and highlights some Petri-net-based workflow tools.


2020 ◽  
Vol 98 (10) ◽  
pp. 953-958
Author(s):  
Amin Motamedinasab ◽  
Azam Anbaraki ◽  
Davood Afshar ◽  
Mojtaba Jafarpour

The general parasupersymmetric annihilation operator of arbitrary order does not reduce to the Kornbluth–Zypman general supersymmetric annihilation operator for the first order. In this paper, we introduce an annihilation operator for a parasupersymmetric harmonic oscillator that in the first order matches with the Kornblouth–Zypman results. Then, using the latter operator, we obtain the parasupercoherent states and calculate their entanglement, uncertainties, and statistics. We observe that these states are entangled for any arbitrary order of parasupersymmetry and their entanglement goes to zero for the large values of the coherency parameter. In addition, we find that the maximum of the entanglement of parasupercoherent states is a decreasing function of the parasupersymmetry order. Moreover, these states are minimum uncertainty states for large and also small values of the coherency parameter. Furthermore, these states show squeezing in one of the quadrature operators for a wide range of the coherency parameter, while no squeezing in the other quadrature operator is observed at all. In addition, using the Mandel parameter, we find that the statistics of these new states are subPoissonian for small values of the coherency parameter.


2019 ◽  
Vol 949 ◽  
pp. 40-47 ◽  
Author(s):  
Sergey Guk ◽  
Eva Augenstein ◽  
Maksim Zapara ◽  
Rudolf Kawalla ◽  
Ulrich Prahl

The present paper deals with the influence of the duration of isothermal spheroidization annealing on the evolution of pearlite bands in various initial states. In this study, two initial conditions of the steel 16MnCrS5 are considered: a) industrially hot-rolled pearlite structures in their ferritic matrix and b) a specifically adjusted microstructure in the lab condition. Based on the experimental investigations and quantitative microstructural analyses, an empirical model for the prediction of pearlite banding within a broad range of annealing durations could be derived. Both, experiment and model, agree that pronounced pearlite bands in the initial state almost disappear after 25 h of spheroidization annealing. On the other hand, a marginal degree of pearlite banding in the initial state increases slightly during annealing. This fact could be explained by inhomogeneous cementite formation inside and outside the primary segregation regions of manganese.


1993 ◽  
Vol 30 (2) ◽  
pp. 287-296 ◽  
Author(s):  
Jean-Marie Fleureau ◽  
Siba Kheirbek-Saoud ◽  
Ria Soemitro ◽  
Said Taibi

Experimental research was carried out on 11 different clayey materials to determine the main characteristics of the drying and wetting paths and the influence of initial state and other factors. Normally consolidated paths are shown to have a large saturated domain, in which a negative pressure is equivalent to an isotropic stress increase; such paths can be derived from correlations with the liquid limit. On the other hand, the behavior of overconsolidated or dried samples is largely dependent on the range of stresses and negative pressures. Key words : suction, unsaturated soils, drying, wetting, correlations, models.


2011 ◽  
Vol 34 (3) ◽  
pp. 113-124 ◽  
Author(s):  
Susan Carey

AbstractA theory of conceptual development must specify the innate representational primitives, must characterize the ways in which the initial state differs from the adult state, and must characterize the processes through which one is transformed into the other. The Origin of Concepts (henceforth TOOC) defends three theses. With respect to the initial state, the innate stock of primitives is not limited to sensory, perceptual, or sensorimotor representations; rather, there are also innate conceptual representations. With respect to developmental change, conceptual development consists of episodes of qualitative change, resulting in systems of representation that are more powerful than, and sometimes incommensurable with, those from which they are built. With respect to a learning mechanism that achieves conceptual discontinuity, I offer Quinian bootstrapping. TOOC concludes with a discussion of how an understanding of conceptual development constrains a theory of concepts.


1997 ◽  
Vol 7 (4) ◽  
pp. 359-397 ◽  
Author(s):  
JOSÉ MESEGUER ◽  
UGO MONTANARI ◽  
VLADIMIRO SASSONE

Place/transition (PT) Petri nets are one of the most widely used models of concurrency. However, they still lack, in our view, a satisfactory semantics: on the one hand the ‘token game’ is too intensional, even in its more abstract interpretations in terms of nonsequential processes and monoidal categories; on the other hand, Winskel's basic unfolding construction, which provides a coreflection between nets and finitary prime algebraic domains, works only for safe nets. In this paper we extend Winskel's result to PT nets. We start with a rather general category PTNets of PT nets, we introduce a category DecOcc of decorated (nondeterministic) occurrence nets and we define adjunctions between PTNets and DecOcc and between DecOcc and Occ, the category of occurrence nets. The role of DecOcc is to provide natural unfoldings for PT nets, i.e., acyclic safe nets where a notion of family is used to relate multiple instances of the same place. The unfolding functor from PTNets to Occ reduces to Winskel's when restricted to safe nets. Moreover, the standard coreflection between Occ and Dom, the category of finitary prime algebraic domains, when composed with the unfolding functor above, determines a chain of adjunctions between PTNets and Dom.


Sign in / Sign up

Export Citation Format

Share Document