scholarly journals On the regularity of solution to the time-dependent p-Stokes system

2020 ◽  
Vol 40 (1) ◽  
pp. 49-69
Author(s):  
Luigi C. Berselli ◽  
Michael Růžička

In this paper we consider the time evolutionary \(p\)-Stokes problem in a smooth and bounded domain. This system models the unsteady motion or certain non-Newtonian incompressible fluids in the regime of slow motions, when the convective term is negligible. We prove results of space/time regularity, showing that first-order time-derivatives and second-order space-derivatives of the velocity and first-order space-derivatives of the pressure belong to rather natural Lebesgue spaces.

2016 ◽  
Vol Volume 23 - 2016 - Special... ◽  
Author(s):  
Amel Ben Abda ◽  
Faten Khayat

We are interested in this paper with the ill-posed Cauchy-Stokes problem. We consider a data completion problem in which we aim recovering lacking data on some part of a domain boundary , from the knowledge of partially overspecified data on the other part. The inverse problem is formulated as an optimization one using an energy-like misfit functional. We give the first order opti-mality condition in terms of an interfacial operator. Displayed numerical results highlight its accuracy. Nous nous intéressons à un problème de Cauchy mal posé, celui de la complétion de données frontières pour les équations de Stokes. Nous voulons reconstituer les données manquantes sur une partie non accessible de la frontière du domaine à partir de données peu surdéterminées sur la partie accessible. Nous formulons ce problème inverse sous forme de minimisation d'une fonctionnelle de type énergie. Les conditions d'optimalité du premier ordre sont écrites en termes d'équation d'interface utilisant les opérateurs de Stecklov-Poincaré. Nous donnons des résultats numériques attestant l'efficacité de la méthode.


1981 ◽  
Vol 46 (2) ◽  
pp. 452-456
Author(s):  
Milan Šolc

The successive time derivatives of relative entropy and entropy production for a system with a reversible first-order reaction alternate in sign. It is proved that the relative entropy for reactions with an equilibrium constant smaller than or equal to one is completely monotonic in the whole definition interval, and for reactions with an equilibrium constant larger than one this function is completely monotonic at the beginning of the reaction and near to equilibrium.


2020 ◽  
Vol 28 (6) ◽  
pp. 797-814
Author(s):  
Elena-Alexandra Melnig

AbstractWe consider systems of parabolic equations coupled in zero and first order terms. We establish Lipschitz estimates in {L^{q}}-norms, {2\leq q\leq\infty}, for the source in terms of the solution in a subdomain. The main tool is a family of appropriate Carleman estimates with general weights, in Lebesgue spaces, for nonhomogeneous parabolic systems.


Author(s):  
Tatiana F. Dolgikh

One of the mathematical models describing the behavior of two horizontally infinite adjoining layers of an ideal incompressible liquid under a solid cover moving at different speeds is investigated. At a large difference in the layer velocities, the Kelvin-Helmholtz instability occurs, which leads to a distortion of the interface. At the initial point in time, the interface is not necessarily flat. From a mathematical point of view, the behavior of the liquid layers is described by a system of four quasilinear equations, either hyperbolic or elliptic, in partial derivatives of the first order. Some type shallow water equations are used to construct the model. In the simple version of the model considered in this paper, in the spatially one-dimensional case, the unknowns are the boundary between the liquid layers h(x,t) and the difference in their velocities γ(x,t). The main attention is paid to the case of elliptic equations when |h|<1 and γ>1. An evolutionary Cauchy problem with arbitrary sufficiently smooth initial data is set for the system of equations. The explicit dependence of the Riemann invariants on the initial variables of the problem is indicated. To solve the Cauchy problem formulated in terms of Riemann invariants, a variant of the hodograph method based on a certain conservation law is used. This method allows us to convert a system of two quasilinear partial differential equations of the first order to a single linear partial differential equation of the second order with variable coefficients. For a linear equation, the Riemann-Green function is specified, which is used to construct a two-parameter implicit solution to the original problem. The explicit solution of the problem is constructed on the level lines (isochrons) of the implicit solution by solving a certain Cauchy problem for a system of ordinary differential equations. As a result, the original Cauchy problem in partial derivatives of the first order is transformed to the Cauchy problem for a system of ordinary differential equations, which is solved by numerical methods. Due to the bulkiness of the expression for the Riemann-Green function, some asymptotic approximation of the problem is considered, and the results of calculations, and their analysis are presented.


2021 ◽  
Vol 5 (4) ◽  
pp. 203
Author(s):  
Suzan Cival Buranay ◽  
Nouman Arshad ◽  
Ahmed Hersi Matan

We give fourth-order accurate implicit methods for the computation of the first-order spatial derivatives and second-order mixed derivatives involving the time derivative of the solution of first type boundary value problem of two dimensional heat equation. The methods are constructed based on two stages: At the first stage of the methods, the solution and its derivative with respect to time variable are approximated by using the implicit scheme in Buranay and Arshad in 2020. Therefore, Oh4+τ of convergence on constructed hexagonal grids is obtained that the step sizes in the space variables x1, x2 and in time variable are indicated by h, 32h and τ, respectively. Special difference boundary value problems on hexagonal grids are constructed at the second stages to approximate the first order spatial derivatives and the second order mixed derivatives of the solution. Further, Oh4+τ order of uniform convergence of these schemes are shown for r=ωτh2≥116,ω>0. Additionally, the methods are applied on two sample problems.


2019 ◽  
Vol 13 ◽  
Author(s):  
Flor A. Espinoza ◽  
Victor M. Vergara ◽  
Eswar Damaraju ◽  
Kyle G. Henke ◽  
Ashkan Faghiri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document