scholarly journals PHASE TRANSITION OF NONSTRANGE-STRANGE QUARK MATTER IN THE INTERIOR OF A NEUTRON STAR

1993 ◽  
Vol 42 (8) ◽  
pp. 1210
Author(s):  
DAI ZI-GAO ◽  
LU TAN ◽  
PENG QIU-HE
2017 ◽  
Vol 45 ◽  
pp. 1760028
Author(s):  
Jhon Andersson Rosero ◽  
Ernesto Kemp

We have studied the phase transition from hadronic to quark matter inside neutron stars, we calculate the rate and emissivity for all the relevant weak interaction processes and solve the Boltzmann transport equation, considering the effect of strong interactions in the perturbative regime to the order of QCD coupling constant [Formula: see text]. We find that the neutrino and antineutrino emissivity is around of 10[Formula: see text] erg.


2007 ◽  
Vol 37 (1a) ◽  
pp. 20-22 ◽  
Author(s):  
Milva Orsaria ◽  
H. Rodrigues ◽  
S. B. Duarte

Particles ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 365-384 ◽  
Author(s):  
Henrique Gieg ◽  
Tim Dietrich ◽  
Maximiliano Ujevic

The gravitational wave and electromagnetic signatures connected to the merger of two neutron stars allow us to test the nature of matter at supranuclear densities. Since the Equation of State governing the interior of neutron stars is only loosely constrained, there is even the possibility that strange quark matter exists inside the core of neutron stars. We investigate how strange quark matter cores affect the binary neutron star coalescence by performing numerical relativity simulations. Interestingly, the strong phase transition can cause a reduction of the convergence order of the numerical schemes to first order if the numerical resolution is not high enough. Therefore, an additional challenge is added in producing high-quality gravitational wave templates for Equation of States with a strong phase transition. Focusing on one particular configuration of an equal mass configuration consistent with GW170817, we compute and discuss the associated gravitational wave signal and some of the electromagnetic counterparts connected to the merger of the two stars. We find that existing waveform approximants employed for the analysis of GW170817 allow describing this kind of systems within the numerical uncertainties, which, however, are several times larger than for pure hadronic Equation of States, which means that even higher resolutions have been employed for an accurate gravitational wave model comparison. We also show that for the chosen Equation of State, quasi-universal relations describing the gravitational wave emission after the moment of merger seem to hold and that the electromagnetic signatures connected to our chosen setup would not be bright enough to explain the kilonova associated to GW170817.


2012 ◽  
Vol 10 ◽  
pp. 123-130 ◽  
Author(s):  
KYUNGMIN KIM ◽  
HYUN KYU LEE ◽  
MANNQUE RHO

We explore the possibility of three phases in the core of neutron star in a form of triple layers. From the center, strange quark matter, kaon condensed nuclear matter and nuclear matter form a triple layer. We discuss how the phase of strange quark matter is smoothly connected to kaon condensed nuclear matter phase. We also demonstrate that the compact star with triple layered structure can be a model compatible with the 1.97-solar-mass object PSR J1614-2230 recently observed.


2004 ◽  
Vol 19 (32) ◽  
pp. 2431-2435
Author(s):  
A. R. PRASANNA ◽  
SUBHARTHI RAY

During the last couple of years astronomers and astrophysicists have been debating on the fact whether the so-called "strange stars" — stars made up of strange quark matter, have been discovered with the candidates like SAX J1808.4–3658, 4U 1728–34, RX J1856.5–3754, etc. The main contention has been the estimation of radius of the star for an assumed mass of ~ 1.4 M⊙ and to see whether the point overlaps with the graphs for the neutron star equation of state or whether it goes to the region of stars made of strange matter equation of state. Using the well-established formulae from general relativity for the gravitational redshift and the "lensing effect" due to bending of photon trajectories, we, in this letter, relate the parameters M and R with the observable parameters, the redshift z and the radiation radius R∞, thus constraining both M and R for specific ranges, without any other arbitrariness. With the required inputs from observations, one ought to incorporate the effects of self-lensing of the compact stars which has been otherwise ignored in all of the estimations done so far. Nonetheless, these effects of self-lensing make a marked difference for constraints on the M–R relation.


Sign in / Sign up

Export Citation Format

Share Document