scholarly journals Synchronization of a critical chaotic system with Lorenz system and Chen system

2005 ◽  
Vol 54 (10) ◽  
pp. 4590
Author(s):  
Ning Di ◽  
Lu Jun-An
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Fuchen Zhang

In this paper, we investigate the ultimate bound set and positively invariant set of a 3D Lorenz-like chaotic system, which is different from the well-known Lorenz system, Rössler system, Chen system, Lü system, and even Lorenz system family. Furthermore, we investigate the global exponential attractive set of this system via the Lyapunov function method. The rate of the trajectories going from the exterior of the globally exponential attractive set to the interior of the globally exponential attractive set is also obtained for all the positive parameters values a,b,c. The innovation of this paper is that our approach to construct the ultimate bounded and globally exponential attractivity sets assumes that the corresponding sets depend on some artificial parameters (λ and m); that is, for the fixed parameters of the system, we have a series of sets depending on λ and m. The results contain the known result as a special case for the fixed λ and m. The efficiency of the scheme is shown numerically. The theoretical results may find wide applications in chaos control and chaos synchronization.


2012 ◽  
Vol 542-543 ◽  
pp. 1042-1046 ◽  
Author(s):  
Xin Deng

In this paper, the first new chaotic system is gained by anti-controlling Chen system,which belongs to the general Lorenz system; also, the second new chaotic system is gained by anti-controlling the first new chaotic system, which belongs to the general Lü system. Moreover,some basic dynamical properties of two new chaotic systems are studied, either numerically or analytically. The obtained results show clearly that Chen chaotic system and two new chaotic systems also can form another Lorenz system family and deserve further detailed investigation.


2008 ◽  
Vol 18 (05) ◽  
pp. 1393-1414 ◽  
Author(s):  
QIGUI YANG ◽  
GUANRONG CHEN

This paper reports the finding of a chaotic system with one saddle and two stable node-foci in a simple three-dimensional (3D) autonomous system. The system connects the original Lorenz system and the original Chen system and represents a transition from one to the other. The algebraical form of the chaotic attractor is very similar to the Lorenz-type systems but they are different and, in fact, nonequivalent in topological structures. Of particular interest is the fact that the chaotic system has a chaotic attractor, one saddle and two stable node-foci. To further understand the complex dynamics of the system, some basic properties such as Lyapunov exponents, bifurcations, routes to chaos, periodic windows, possible chaotic and periodic-window parameter regions, and the compound structure of the system are analyzed and demonstrated with careful numerical simulations.


2002 ◽  
Vol 12 (12) ◽  
pp. 2917-2926 ◽  
Author(s):  
JINHU LÜ ◽  
GUANRONG CHEN ◽  
DAIZHAN CHENG ◽  
SERGEJ CELIKOVSKY

This paper introduces a unified chaotic system that contains the Lorenz and the Chen systems as two dual systems at the two extremes of its parameter spectrum. The new system represents the continued transition from the Lorenz to the Chen system and is chaotic over the entire spectrum of the key system parameter. Dynamical behaviors of the unified system are investigated in somewhat detail.


2019 ◽  
Vol 29 (14) ◽  
pp. 1950197 ◽  
Author(s):  
P. D. Kamdem Kuate ◽  
Qiang Lai ◽  
Hilaire Fotsin

The Lorenz system has attracted increasing attention on the issue of its simplification in order to produce the simplest three-dimensional chaotic systems suitable for secure information processing. Meanwhile, Sprott’s work on elegant chaos has revealed a set of 19 chaotic systems all described by simple algebraic equations. This paper presents a new piecewise-linear chaotic system emerging from the simplification of the Lorenz system combined with the elegance of Sprott systems. Unlike the majority, the new system is a non-Shilnikov chaotic system with two nonhyperbolic equilibria. It is multiplier-free, variable-boostable and exclusively based on absolute value and signum nonlinearities. The use of familiar tools such as Lyapunov exponents spectra, bifurcation diagrams, frequency power spectra as well as Poincaré map help to demonstrate its chaotic behavior. The novel system exhibits inverse period doubling bifurcations and multistability. It has only five terms, one bifurcation parameter and a total amplitude controller. These features allow a simple and low cost electronic implementation. The adaptive synchronization of the novel system is investigated and the corresponding electronic circuit is presented to confirm its feasibility.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
S. S. Motsa ◽  
Y. Khan ◽  
S. Shateyi

This paper centres on the application of the new piecewise successive linearization method (PSLM) in solving the chaotic and nonchaotic Chen system. Numerical simulations are presented graphically and comparison is made between the PSLM and Runge-Kutta-based methods. The work shows that the proposed method provides good accuracy and can be easily extended to other dynamical systems including those that are chaotic in nature.


2007 ◽  
Vol 17 (06) ◽  
pp. 2021-2031 ◽  
Author(s):  
H. K. LAM ◽  
F. H. F. LEUNG

This paper proposes a linear sampled-data controller for the stabilization of chaotic system. The system stabilization and performance issues will be investigated. Stability conditions will be derived based on the Lyapunov approach. The findings of the maximum sampling period and the feedback gain of controller, and the optimization of system performance will be formulated as a generalized eigenvalue minimization problem. Based on the analysis result, a stable linear sampled-data controller can be realized systematically to stabilize a chaotic system. An example of stabilizing a Lorenz system will be given to illustrate the design procedure and effectiveness of the proposed approach.


2020 ◽  
Vol 17 (04) ◽  
pp. 2050062 ◽  
Author(s):  
Chunsheng Feng ◽  
Qiujian Huang ◽  
Yongjian Liu

Little seems to be known about the study of the chaotic system with only Lyapunov stable equilibria from the perspective of differential geometry. Therefore, this paper presents Jacobi analysis of an unusual three-dimensional (3D) autonomous chaotic system. Under certain parameter conditions, this system has positive Lyapunov exponents and only two linear stable equilibrium points, which means that chaotic attractor and Lyapunov stable equilibria coexist. The dynamical behavior of the deviation vector near the whole trajectories (including all equilibrium points) is analyzed in detail. The results show that the value of the deviation curvature tensor at equilibrium points is only related to parameters; the two equilibrium points of the system are Jacobi stable if the parameters satisfy certain conditions. Particularly, for a specific set of parameters, the linear stable equilibrium points of the system are always Jacobi unstable. A periodic orbit that is Lyapunov stable is also proven to be always Jacobi unstable. Next, Jacobi-stable regions of the Lorenz system, the Chen system and the system under study are compared for specific parameters. It can be found that although these three chaotic systems are very similar, their regions of Jacobi stable parameters are much different. Finally, by comparing Jacobi stability with Lyapunov stability, the obtained results demonstrate that the Jacobi stable parameter region is basically symmetric with the Lyapunov stable parameter region.


2019 ◽  
Vol 29 (10) ◽  
pp. 1950139 ◽  
Author(s):  
Qiujian Huang ◽  
Aimin Liu ◽  
Yongjian Liu

In this paper, the research of the Jacobi stability of the Chen system is performed by using the KCC-theory. By associating a nonlinear connection and a Berwald connection, five geometrical invariants of the Chen system are obtained. The Jacobi stability of the Chen system at equilibrium points and a periodic orbit is investigated in terms of the eigenvalues of the deviation curvature tensor. The obtained results show that the origin is always Jacobi unstable, while the Jacobi stability of the other two nonzero equilibrium points depends on the values of the parameters. And a periodic orbit of the Chen system is proved to be also Jacobi unstable. Furthermore, Jacobi stability regions of the Chen system and the Lorenz system are compared. Finally, the dynamical behavior of the components of the deviation vector near the equilibrium points is also discussed.


2011 ◽  
Vol 21 (09) ◽  
pp. 2695-2712 ◽  
Author(s):  
XIANYI LI ◽  
HAIJUN WANG

In this paper, a new Lorenz-type system with chaotic attractor is formulated. The structure of the chaotic attractor in this new system is found to be completely different from that in the Lorenz system or the Chen system or the Lü system, etc., which motivates us to further study in detail its complicated dynamical behaviors, such as the number of its equilibrium, the stability of the hyperbolic and nonhyperbolic equilibrium, the degenerate pitchfork bifurcation, the Hopf bifurcation and the local manifold character, etc., when its parameters vary in their space. The existence or nonexistence of homoclinic and heteroclinic orbits of this system is also rigorously proved. Numerical simulation evidences are also presented to examine the corresponding theoretical analytical results.


Sign in / Sign up

Export Citation Format

Share Document