scholarly journals Response analysis of two-degree-of-freedom impact oscillator to random excitation

2008 ◽  
Vol 57 (10) ◽  
pp. 6169
Author(s):  
Wang Liang ◽  
Xu Wei ◽  
Li Ying
Author(s):  
Akira Saito ◽  
Junta Umemoto ◽  
Kohei Noguchi ◽  
Meng-Hsuan Tien ◽  
Kiran D’Souza

Abstract In this paper, an experimental forced response analysis for a two degree of freedom piecewise-linear oscillator is discussed. First, a mathematical model of the piecewise linear oscillator is presented. Second, the experimental setup developed for the forced response study is presented. The experimental setup is capable of investigating a two degree of freedom piecewise linear oscillator model. The piecewise linearity is achieved by attaching mechanical stops between two masses that move along common shafts. Forced response tests have been conducted, and the results are presented. Discussion of characteristics of the oscillators are provided based on frequency response, spectrogram, time histories, phase portraits, and Poincaré sections. Period doubling bifurcation has been observed when the excitation frequency changes from a frequency with multiple contacts between the masses to a frequency with single contact between the masses occurs.


Author(s):  
David Wagg

In this paper we consider the dynamics of compliant mechanical systems subject to combined vibration and impact forcing. Two specific systems are considered; a two degree of freedom impact oscillator and a clamped-clamped beam. Both systems are subject to multiple motion limiting constraints. A mathematical formulation for modelling such systems is developed using a modal approach including a modal form of the coefficient of restitution rule. The possible impact configurations for an N degree of freedom lumped mass system are considered. We then consider sticking motions which occur when a single mass in the system becomes stuck to an impact stop, which is a form of periodic localization. Then using the example of a two degree of freedom system with two constraints we describe exact modal solutions for the free flight and sticking motions which occur in this system. A numerical example of a sticking orbit for this system is shown and we discuss identifying a nonlinear normal modal basis for the system. This is achieved by extending the normal modal basis to include localized modes. Finally preliminary experimental results from a clamped-clamped vibroimpacting beam are considered and a simplified model discussed which uses an extended modal basis including localized modes.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1374
Author(s):  
Nicolae Herisanu ◽  
Vasile Marinca

In this paper, a new approach is proposed to analyze the behavior of a nonlinear two-degree-of-freedom vibro-impact oscillator subject to a harmonic perturbing force, based on a combination of analytical and numerical approaches. The nonlinear governing equations are analytically solved by means of a new analytical technique, namely the Optimal Auxiliary Functions Method (OAFM), which provided highly accurate explicit analytical solutions. Benefiting from these results, the application of Schur principle made it possible to analyze the stability conditions for the considered system. Various types of possible motions were emphasized, taking into account possible initial conditions and different parameters, and the explicit analytical solutions were found to be very useful to analyze the kinetic energy loss, the contact force, and the stability of periodic motions.


2001 ◽  
Vol 23 (2) ◽  
pp. 95-109 ◽  
Author(s):  
Luu Xuan Hung

The paper presents the analysis of some two-degree-of-freedom nonlinear systems under random excitation using Local Mean Square Error Criterion which is an extension of Gaussian Equivalent Linearization. The results obtained shows that the new technique can be very efficiently used not only for simple-degree-of-freedom systems as presented in the previous papers, but also for multi-degree-of-freedom ones. The solution accuracy obtained by the proposed technique is much more improved than that using the traditional linearization. The conclusions in the paper point up the significance of this technique.


Author(s):  
Shan Yin ◽  
Jinchen Ji ◽  
Shuning Deng ◽  
Guilin Wen

Saddle-node or period-doubling bifurcations of the near-grazing impact periodic motions have been extensively studied in the impact oscillators, but the near-grazing Neimark-Sacker bifurcations have not been discussed yet. For the first time, this paper uncovers the novel dynamic behavior of Neimark-Sacker bifurcations, which can appear in a small neighborhood of the degenerate grazing point in a two degree-of-freedom impact oscillator. The higher order discontinuity mapping technique is used to determine the degenerate grazing point. Then, shooting method is applied to obtain the one-parameter continuation of the elementary impact periodic motion near degenerate grazing point and the peculiar phenomena of Neimark-Sacker bifurcations are revealed consequently. A two-parameter continuation is presented to illustrate the relationship between the observed Neimark-Sacker bifurcations and degenerate grazing point. New features that differ from the reported situations in literature can be found. Finally, the observed Neimark-Sacker bifurcation is verified by checking the existence and stability conditions in line with the generic theory of Neimark-Sacker bifurcation. The unstable bifurcating quasi-periodic motion is numerically demonstrated on the Poincaré section.


Sign in / Sign up

Export Citation Format

Share Document