scholarly journals Adaptive sliding-mode control of chaotic permanent magnet synchronous motor system based on extended state observer

2014 ◽  
Vol 63 (22) ◽  
pp. 220506 ◽  
Author(s):  
Chen Qiang ◽  
Nan Yu-Rong ◽  
Xing Ke-Xin
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Peipei Xia ◽  
Yongting Deng ◽  
Zhiqian Wang ◽  
Hongwen Li

The sliding mode control (SMC) strategy is employed to a permanent magnet synchronous motor (PMSM) vector control system in this study to improve system robustness against parameter variations and load disturbance. To decrease the intrinsic chattering behavior of SMC, a speed SMC with an adaptive law and an extended state observer (ESO) is proposed. In this method, based on the Lyapunov stability theorem, adaptive estimation laws are deduced to estimate uncertainties of a PMSM caused by parameter variations and unmodeled dynamics. Online estimated uncertainties can be used to eliminate the effect caused by the real uncertainties. In addition, an ESO is applied to observe the load disturbance in real time. The load disturbance observed value is then utilized to the output side of the speed adaptive SMC controller as feed-forward compensation. Both the simulation and experiment results demonstrate that the proposed approach effectively alleviates system chattering and enhances system robustness against uncertainty and load disturbance.


2020 ◽  
pp. 107754632093649
Author(s):  
Zhang Rongyun ◽  
Gong Changfu ◽  
Shi Peicheng ◽  
Zhao Linfeng ◽  
Zheng Changsheng

This article focuses on realizing the chaos control of a permanent magnet synchronous motor by combining a pseudo-linear inverse system of the permanent magnet synchronous motor and synthetical sliding mode control. First, the permanent magnet synchronous motor dimensionless nonlinear mathematical model is established, and its chaos is analyzed by the Lyapunov exponent method. The permanent magnet synchronous motor parameter range when chaos appears is obtained. Then, the inverse system decoupling method is used to analyze the reversibility of the permanent magnet synchronous motor system, and the permanent magnet synchronous motor inverse system is obtained, which is compounded with the original system into a pseudo-linear inverse system that consists of two independent subsystems, including a first-order d-axis current system and a second-order rotational speed system, to decouple the permanent magnet synchronous motor system. Third, the first-order d-axis subsystem is controlled by sliding mode control with a hyperbolic tangent function as the switching function, and the second-order speed subsystem is controlled by super-twisting sliding mode control with a hyperbolic tangent function as the switching function, which is called the synthetical sliding mode control. The permanent magnet synchronous motor pseudo-linear inverse system is controlled by using the synthetical sliding mode to realize the chaos control of the permanent magnet synchronous motor. Finally, three kinds of permanent magnet synchronous motor chaos control systems are established in MATLAB/Simulink software, and the experimental tests are implemented. The results show that the proposed permanent magnet synchronous motor chaos control system has good performance, which can effectively eliminate chattering in sliding mode control and control chaos in the permanent magnet synchronous motor system.


Sign in / Sign up

Export Citation Format

Share Document