scholarly journals Spall strength dependence on temperature, grain size and strain rate in pure ductile metals

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
2018 ◽  
Vol 158 ◽  
pp. 313-329 ◽  
Author(s):  
T.P. Remington ◽  
E.N. Hahn ◽  
S. Zhao ◽  
R. Flanagan ◽  
J.C.E. Mertens ◽  
...  

2019 ◽  
Vol 89 (5) ◽  
pp. 725
Author(s):  
Г.В. Гаркушин ◽  
А.С. Савиных ◽  
С.В. Разоренов ◽  
Г.И. Канель

AbstractTwo series of shock-wave experiments have been conducted in order to measure the Hugoniot elastic limit and determine the strain rate dependence of critical fracture stress for tantalum experiencing spall fracture. Tantalum specimens have been preannealed in vacuum at 1000°C. The evolution of elastoplastic compression shock waves at room and elevated up to 500°C temperatures has been presented from complete wave profiles recorded by a VISAR laser Doppler velocimeter. The spall strength dependence on the strain rate during the expansion of the material in a rarefaction wave has been determined.


1987 ◽  
Vol 33 (115) ◽  
pp. 274-280 ◽  
Author(s):  
David M. Cole

AbstractThis paper presents and discusses the results of constant deformation-rate tests on laboratory-prepared polycrystalline ice. Strain-rates ranged from 10−7to 10−1s−1, grain–size ranged from 1.5 to 5.8 mm, and the test temperature was −5°C.At strain-rates between 10−7and 10−3s−1, the stress-strain-rate relationship followed a power law with an exponent ofn= 4.3 calculated without regard to grain-size. However, a reversal in the grain-size effect was observed: below a transition point near 4 × 10−6s−1the peak stress increased with increasing grain-size, while above the transition point the peak stress decreased with increasing grain-size. This latter trend persisted to the highest strain-rates observed. At strain-rates above 10−3s−1the peak stress became independent of strain-rate.The unusual trends exhibited at the lower strain-rates are attributed to the influence of the grain-size on the balance of the operative deformation mechanisms. Dynamic recrystallization appears to intervene in the case of the finer-grained material and serves to lower the peak stress. At comparable strain-rates, however, the large-grained material still experiences internal micro-fracturing, and thin sections reveal extensive deformation in the grain-boundary regions that is quite unlike the appearance of the strain-induced boundary migration characteristic of the fine-grained material.


2015 ◽  
Vol 830-831 ◽  
pp. 337-340
Author(s):  
Ashish Kumar Saxena ◽  
Manikanta Anupoju ◽  
Asim Tewari ◽  
Prita Pant

An understanding of the plastic deformation behavior of Ti6Al4V (Ti64) is of great interest because it is used in aerospace applications due to its high specific strength. In addition, Ti alloys have limited slip systems due to hexagonal crystal structure; hence twinning plays an important role in plastic deformation. The present work focuses upon the grain size effect on plastic deformation behaviour of Ti64. Various microstructures with different grain size were developed via annealing of Ti64 alloy in α-β phase regime (825°C and 850°C) for 4 hours followed by air cooling. The deformation behavior of these samples was investigated at various deformation temperature and strain rate conditions. Detailed microstructure studies showed that (i) smaller grains undergoes twinning only at low temperature and high strain rate, (ii) large grain samples undergo twinning at all temperatures & strain rates, though the extent of twinning varied.


2016 ◽  
Vol 838-839 ◽  
pp. 404-409
Author(s):  
Roman Mishnev ◽  
Iaroslava Shakhova ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

A Cu-0.87%Cr-0.06%Zr alloy was subjected to equal channel angular pressing (ECAP) at a temperature of 400 °C up to a total strain of ~ 12. This processing produced ultra-fine grained (UFG) structure with an average grain size of 0.6 μm and an average dislocation density of ~4×1014 m-2. Tensile tests were carried out in the temperature interval 450 – 650 °C at strain rates ranging from 2.8´10-4 to 0.55 s-1. The alloy exhibits superplastic behavior in the temperature interval 550 – 600 °C at strain rate over 5.5´10-3 s-1. The highest elongation-to-failure of ~300% was obtained at a temperature of 575 °C and a strain rate of 2.8´10-3 s-1 with the corresponding strain rate sensitivity of 0.32. It was shown the superplastic flow at the optimum conditions leads to limited grain growth in the gauge section. The grain size increases from 0.6 μm to 0.87 μm after testing, while dislocation density decreases insignificantly to ~1014 m-2.


1997 ◽  
Vol 07 (C3) ◽  
pp. C3-951-C3-956 ◽  
Author(s):  
J. Buchar ◽  
S. Rolc ◽  
J. Hrebícek

Sign in / Sign up

Export Citation Format

Share Document