Effect of a Forefoot Off-loading Postoperative Shoe on Muscle Activity, Posture, and Static Balance

2013 ◽  
Vol 103 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Joanne S. Paton ◽  
Katherine Thomason ◽  
Karl Trimble ◽  
James E. Metcalfe ◽  
Jonathan Marsden

Background: We investigated whether a forefoot off-loading postoperative shoe (FOPS) alters standing posture, ankle muscle activity, and static postural sway and whether any effects are altered by wearing a shoe raise on the contralateral side. Methods: Posture, ankle muscle activity, and postural sway were compared in 14 healthy participants wearing either a FOPS or a control shoe with or without a contralateral shoe raise. Participants were tested under different sensory and support surface conditions. Additionally, reductions in peak pressure under the forefoot while walking were assessed with and without a contralateral shoe raise to determine whether the FOPS continued to achieve its primary off-loading function. Results: Compared with the control condition, wearing a FOPS moved the center of pressure posteriorly, increased tibialis anterior muscle activity, and reduced ankle plantarflexor activity. These changes decreased when a contralateral shoe raise was added. No difference in postural sway was found between footwear conditions. Forefoot peak pressure was always reduced when wearing the FOPS. Conclusions: The posterior shift in center of pressure toward and behind the ankle joint axis is believed to result in the increase in tibialis anterior muscle activity that now acts as the primary stabilizer around the ankle. Instability may, therefore, increase in patients with weak tibialis anterior muscles (eg, diabetic neuropathy) who need to wear offloading devices for ulcer management. We suggest that the addition of a contralateral shoe raise fitted with a FOPS may potentially be beneficial in maintaining stability while off-loading the forefoot in this patient group. (J Am Podiatr Med Assoc 103(1): 36–42, 2013)

1999 ◽  
Vol 9 (2) ◽  
pp. 103-109
Author(s):  
Reginald L. Reginella ◽  
Mark S. Redfern ◽  
Joseph M. Furman

Sensory information from lightly touching a reference with the hand is known to influence postural sway in young adults. The primary aim of this study was to compare the influence of finger contact (FC) with an earth-fixed reference to the influence of FC with a body-fixed reference. A second goal of this study was to determine if FC is used differently by older adults compared to younger adults. Using a force plate, center of pressure at the feet was recorded from blindfolded young and older subjects during several conditions. Subjects either did or did not lightly touch a force-sensitive plate that was either earth-fixed or moved forward and backward in synchrony with body sway (that is, sway-referenced). In addition, support surface conditions were also varied, including a fixed floor and a sway-referenced floor using an EquitestTM. Results showed that the type of FC, floor condition, and age each had an effect on postural sway. Touching an earth-fixed plate decreased postural sway as compared to no touching, while touching a sway-referenced plate incresased sway. This influence of FC was enhanced when the floor was sway-referenced. Although older subjects swayed more than young subjects overall, no age-FC interactions occurred, indicating that FC was not utilized differently between the age groups. This study suggests that FC cannot be disregarded as erroneous, especially when proprioceptive information from the legs is distorted. Further, FC is integrated with other sensory information by the postural control system similarly in young and older persons.


Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 259-263
Author(s):  
Tae-sung In ◽  
Jin-Hwa Jung ◽  
Sang-hun Jang ◽  
Kyung-hun Kim ◽  
Kyoung-sim Jung ◽  
...  

AbstractLight touch is the combination of cutaneous and kinesthetic inputs. The literature suggests that light touch compensates for a reduced amount of center of pressure information in older peoples, blind subjects and patients with neurological disorder. This study investigated the effects of light touch applied to an external bar, on the postural sway in individuals with hemiparetic stroke. We used a cross sectional study, fifteen individuals with stroke and 15 healthy age-matched adults stood as still as possible on a force plate. Experimental trials (duration, 30 s) included two visual conditions (open eyes and closed eyes), two somatosensory conditions (no touch and light touch) and two support surface conditions (firm and foam surfaces). The area of center of pressure (COP) and the mean velocity of COP in the medio-lateral and anterior-posterior directions were assessed. For both groups, COP velocity and area decreased with light touch regardless of the visual or surface conditions. The effects of light touch were similar in both groups. In addition, results show that the effectiveness of light touch in reducing postural sway was greater on a foam surface than on a firm surface. Our findings indicate that light touch could be beneficial in postural control for individuals with hemi-paretic stroke


Motor Control ◽  
2020 ◽  
Vol 24 (2) ◽  
pp. 253-273
Author(s):  
Masakazu Matsuoka ◽  
Hiroshi Kunimura ◽  
Koichi Hiraoka

This study investigated the effect of the time and direction preparation on the electromyographic (EMG) response of the ankle extensor to the backward translation of the support surface in stance. Fifteen healthy adult males aged 35.9 ± 6.2 years participated in this study. In the constant session, the interval between the warning cue and the onset of the backward support surface translation was constant. In the random time session, the interval was randomly assigned in each trial, but the direction was backward across the trials. In the random direction session, the direction was randomly assigned in each trial, but the interval was constant. The EMG amplitude in the time epochs 100–175 ms after translation onset in the random time session was significantly greater than that in the constant session in the soleus, gastrocnemius, and tibialis anterior muscles. The EMG amplitude in the time epochs 120–185 ms after translation onset in the random direction session was significantly greater than that in the constant session in the gastrocnemius and tibialis anterior muscles. This finding indicates that time and direction preparation reduces the late component of the ankle EMG response to backward translation of the support surface. This finding is explained by the supposed process through which uncertainty of the upcoming event causes disinhibition of response or by how time and direction preparation optimizes the magnitude of the long-latency response mediated by the transcortical pathway.


2015 ◽  
Vol 25 (1) ◽  
pp. 168-174 ◽  
Author(s):  
Thiago Lemos ◽  
Luís A. Imbiriba ◽  
Claudia D. Vargas ◽  
Taian M. Vieira

Sign in / Sign up

Export Citation Format

Share Document