Peroneus longus and tibialis anterior muscle activity in the stance phase: A quantified electromyographic study of 10 controls and 25 patients with chronic ankle instability

1995 ◽  
Vol 66 (6) ◽  
pp. 517-523 ◽  
Author(s):  
Jan Willem K Louwerens ◽  
Bert van Linge ◽  
Luuk W L de Klerk ◽  
Paul G H Mulder ◽  
Chris J Snijders
2015 ◽  
Vol 50 (7) ◽  
pp. 688-696 ◽  
Author(s):  
Bart Dingenen ◽  
Louis Peeraer ◽  
Kevin Deschamps ◽  
Steffen Fieuws ◽  
Luc Janssens ◽  
...  

Context Participants with chronic ankle instability (CAI) use an altered neuromuscular strategy to shift weight from double-legged to single-legged stance. Shoes and foot orthoses may influence these muscle-activation patterns. Objective To evaluate the influence of shoes and foot orthoses on onset times of lower extremity muscle activity in participants with CAI during the transition from double-legged to single-legged stance. Design Cross-sectional study. Setting Musculoskeletal laboratory. Patients or Other Participants A total of 15 people (9 men, 6 women; age = 21.8 ± 3.0 years, height = 177.7 ± 9.6 cm, mass = 72.0 ± 14.6 kg) who had CAI and wore foot orthoses were recruited. Intervention(s) A transition task from double-legged to single-legged stance was performed with eyes open and with eyes closed. Both limbs were tested in 4 experimental conditions: (1) barefoot (BF), (2) shoes only, (3) shoes with standard foot orthoses, and (4) shoes with custom foot orthoses (SCFO). Main Outcome Measure(s) The onset of activity of 9 lower extremity muscles was recorded using surface electromyography and a single force plate. Results Based on a full-factorial (condition, region, limb, vision) linear model for repeated measures, we found a condition effect (F3,91.8 = 9.39, P < .001). Differences among experimental conditions did not depend on limb or vision condition. Based on a 2-way (condition, muscle) linear model within each region (ankle, knee, hip), earlier muscle-activation onset times were observed in the SCFO than in the BF condition for the peroneus longus (P < .001), tibialis anterior (P = .003), vastus medialis obliquus (P = .04), and vastus lateralis (P = .005). Furthermore, the peroneus longus was activated earlier in the shoes-only (P = .02) and shoes-with-standard-foot-orthoses (P = .03) conditions than in the BF condition. No differences were observed for the hip muscles. Conclusions Earlier onset of muscle activity was most apparent in the SCFO condition for ankle and knee muscles but not for hip muscles during the transition from double-legged to single-legged stance. These findings might help clinicians understand how shoes and foot orthoses can influence neuromuscular control in participants with CAI.


2013 ◽  
Vol 103 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Joanne S. Paton ◽  
Katherine Thomason ◽  
Karl Trimble ◽  
James E. Metcalfe ◽  
Jonathan Marsden

Background: We investigated whether a forefoot off-loading postoperative shoe (FOPS) alters standing posture, ankle muscle activity, and static postural sway and whether any effects are altered by wearing a shoe raise on the contralateral side. Methods: Posture, ankle muscle activity, and postural sway were compared in 14 healthy participants wearing either a FOPS or a control shoe with or without a contralateral shoe raise. Participants were tested under different sensory and support surface conditions. Additionally, reductions in peak pressure under the forefoot while walking were assessed with and without a contralateral shoe raise to determine whether the FOPS continued to achieve its primary off-loading function. Results: Compared with the control condition, wearing a FOPS moved the center of pressure posteriorly, increased tibialis anterior muscle activity, and reduced ankle plantarflexor activity. These changes decreased when a contralateral shoe raise was added. No difference in postural sway was found between footwear conditions. Forefoot peak pressure was always reduced when wearing the FOPS. Conclusions: The posterior shift in center of pressure toward and behind the ankle joint axis is believed to result in the increase in tibialis anterior muscle activity that now acts as the primary stabilizer around the ankle. Instability may, therefore, increase in patients with weak tibialis anterior muscles (eg, diabetic neuropathy) who need to wear offloading devices for ulcer management. We suggest that the addition of a contralateral shoe raise fitted with a FOPS may potentially be beneficial in maintaining stability while off-loading the forefoot in this patient group. (J Am Podiatr Med Assoc 103(1): 36–42, 2013)


2020 ◽  
pp. 1-8
Author(s):  
Javad Sarvestan ◽  
Alan R. Needle ◽  
Peyman Aghaie Ataabadi ◽  
Zuzana Kovačíková ◽  
Zdeneˇk Svoboda ◽  
...  

Context: Chronic ankle instability is documented to be followed by a recurrence of giving away episodes due to impairments in mechanical support. The application of ankle Kinesiotaping (KT) as a therapeutic intervention has been increasingly raised among athletes and physiotherapists. Objectives: This study aimed to investigate the impacts of ankle KT on the lower-limb kinematics, kinetics, dynamic balance, and muscle activity of college athletes with chronic ankle instability. Design: A crossover study design. Participants: Twenty-eight college athletes with chronic ankle sprain (11 females and 17 males, 23.46 [2.65] y, 175.36 [11.49] cm, 70.12 [14.11] kg) participated in this study. Setting: The participants executed 3 single-leg drop landings under nontaped and ankle Kinesio-taped conditions. Ankle, knee, and hip kinematics, kinetics, and dynamic balance status and the lateral gastrocnemius, medial gastrocnemius, tibialis anterior, and peroneus longus muscle activity were recorded and analyzed. Results: The application of ankle KT decreased ankle joint range of motion (P = .039) and angular velocities (P = .044) in the sagittal plane, ground reaction force rate of loading (P = .019), and mediolateral time to stability (P = .035). The lateral gastrocnemius (0.002) and peroneus longus (0.046) activity amplitudes also experienced a significant decrease after initial ground contact when the participants’ ankles were taped, while the application of ankle KT resulted in an increase in the peroneus longus (0.014) activity amplitudes before initial ground contact. Conclusions: Ankle lateral supports provided by KT potentially decreases mechanical stresses applied to the lower limbs, aids in dynamic balance, and lowers calf muscle energy consumption; therefore, it could be offered as a suitable supportive means for acute usage in athletes with chronic ankle instability.


2020 ◽  
Vol 41 (4) ◽  
pp. 479-485
Author(s):  
Sun-hee Ahn ◽  
Ui-jae Hwang ◽  
Gyeong-tae Gwak ◽  
Hwa-ik Yoo ◽  
Oh-yun Kwon

Background: Weakness of evertor strength is controversial in chronic ankle instability (CAI). Ankle evertor muscles are attached to the toe joints as well as to the metatarsal bone. Therefore, it is necessary to consider toe joint position for the measurement of evertor strength. The purpose of this study was to compare ankle evertor strength and muscle activity during eversion with and without toe flexion (TF) in individuals with CAI and individuals in a healthy group. Methods: Fifteen subjects with CAI and 15 healthy subjects participated in this study. Isometric ankle evertor strength and muscle activity of the peroneus longus (PL), peroneus brevis (PB), and extensor digitorum longus (EDL) were measured during eversion with and without TF. Results: The results indicated a significant interaction effect in evertor strength ( P = .03) and no significant interaction effect on EMG of the PL ( P = .08), PB ( P = .12), and EDL ( P = .28). However, measurements of muscle activity of the PL and PB between eversion with and without TF revealed a significant difference in the CAI group ( P < .01) and no significant difference in the healthy group (PL: P = .07; PB: P = .13). Conclusion: The results indicated that subjects with CAI had increased EDL compensation and reduced selective activation of the PL and PB during eversion. Clinical Relevance: Our findings suggest that clinicians should consider the activation of EDL when training the evertor of patients with CAI.


1994 ◽  
Vol 15 (2) ◽  
pp. 75-79 ◽  
Author(s):  
Mark W. Cornwall ◽  
Thomas G. Mcpoil

The purpose of this study was to determine whether tibialis anterior muscle activity influences the rate of rearfoot motion during walking. Two-dimensional rearfoot motion was recorded from 23 feet. The feet were assigned to one of two experimental groups. Muscle activity was recorded from the tibialis anterior muscle using surface electrodes. The early pronators (N = 12) reached maximal pronation within the first 20K of the stance phase. The late pronators (N = 11) reached maximal pronation only after 40% of the stance phase. The results of a C-test showed that there was a significant difference (P < .05) in the time to minimal tibialis anterior muscle activity between the two groups. These results indicate that tibialis anterior muscle activity can influence rearfoot motion during the stance phase of walking. A clinician should consider the muscular system when evaluating and designing a treatment program for patients with foot-related problems. The results of this study also indicate that static nonweightbearing evaluations alone may not provide an accurate picture of the foot during walking.


2020 ◽  
Vol 36 (6) ◽  
pp. 416-422
Author(s):  
Adam E. Jagodinsky ◽  
Rebecca Angles ◽  
Christopher Wilburn ◽  
Wendi H. Weimar

Current theoretical models suggest that ankle sprain copers exhibit movement adaptations contributing to the avoidance of chronic ankle instability. However, few studies have examined adaptations at the level of biomechanical motor synergies. The purpose was to examine characteristics of the support moment synergy between individuals with chronic ankle instability, copers, and healthy individuals. A total of 48 individuals participated in the study. Lower-extremity kinetics and variability in the moment of force patterns were assessed during the stance phase of walking trials. The copers exhibited reductions in the support moment during the load response and preswing phase compared with the chronic ankle instability group, as well as during the terminal stance and preswing phase compared the healthy group. The copers also exhibited reductions in the hip extensor moment and ankle plantarflexion moment compared with healthy and chronic ankle instability groups during intervals of stance phase. Variability of the support moment and knee moment was greater in the copers compared with the chronic ankle instability group. Dampening of the support moment and select joint moments exhibited by the copers may indicate an adaptive mechanism to mitigate loading perturbations on the previously injured ankle. Heightened motor variability in copers may be indicative of a more adaptable motor synergy compared with individuals with chronic ankle instability.


Sign in / Sign up

Export Citation Format

Share Document