Normal values of plantar pressure measurements determined using the EMED-SF system

2000 ◽  
Vol 90 (6) ◽  
pp. 295-299 ◽  
Author(s):  
AR Bryant ◽  
P Tinley ◽  
KP Singer

Plantar pressure-measurement technology is being increasingly used by podiatric physicians and surgeons in both clinical practice and research. The authors present normal reference-range values for peak pressure, mean pressure, and pressure-time integral obtained from 30 healthy subjects using a two-step recording technique and the EMED-SF system, as background for proposed clinical trials. Normative data of this type are essential for clinical practice in the comparison of plantar pressure-measurement values of individual patients with those of normal, asymptomatic feet.

2004 ◽  
Vol 94 (3) ◽  
pp. 246-254 ◽  
Author(s):  
Penny J. Claisse ◽  
Jodi Binning ◽  
Julia Potter

This study demonstrates the effect of orthotic therapy for toe deformity on toe and metatarsal head pressures using a new analysis method facilitated by an in-shoe pressure-measurement system’s ability to export detailed data. Plantar pressure–time integrals in 11 individuals (22 feet) with claw deformity of the lesser toes were measured with and without toe props. Differences in pressure–time integrals at every individual sensor unit were then calculated for the two conditions, and significance was tested using the paired t-test. Plantar surface charts with contours of equal significant pressure–time integral change showed significant reduction under 17 second toes (77%), 22 third toes (100%), 15 fourth toes (68%), 13 second metatarsal heads (59%), 16 third metatarsal heads (73%), and 16 fourth metatarsal heads (73%). All 22 feet showed increases under the prop in the area of the third toe sulcus. This innovative approach to plantar pressure analysis could improve access to data that show significant pressure–time integral changes and, therefore, could advance the clinical application of plantar pressure measurement. (J Am Podiatr Med Assoc 94(3): 246–254, 2004)


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 50 ◽  
Author(s):  
Franziska Mally ◽  
Otto Hofstätter ◽  
Markus Eckelt

While it is assumed that pressure-sensing insoles are usually placed directly below the foot and on top of the shoes’ standard insoles, nearly no previously published study actually describes the procedure, which leaves a slight uncertainty. Therefore, the aim of this study was to evaluate whether the placement has an influence on selected parameters or not. Five healthy participants took part in the measurements and ran on a treadmill at a running velocity of 10 km/h with three different running shoes. Plantar pressure was measured using pressure-sensing insoles, which were once placed on top and once below the shoes’ standard insoles. Selected parameters were the maximum and mean pressure and the range of the center of pressure (COP) in anterior–posterior and medial–lateral directions. The results indicate that maximum and mean pressure decrease when the pressure-sensing insole lies below the shoe’s insole and the medial–lateral COP is the least effected parameter.


Author(s):  
Yao Meng ◽  
Li Yang ◽  
Xin Yan Jiang ◽  
Bíró István ◽  
Yao Dong Gu

The objective of this study was to investigate the effectiveness of different hardness of personalized custom insoles on plantar pressure redistribution in healthy young males during walking and running. Six males participated in the walking and running test (age: 24±1.6 years, weight: 67.9±3.6 kg, height: 175.5±4.7 cm). All subjects were instructed to walk and run along a 10m pathway wearing two different hardness insoles (i.e., hard custom insoles (CHI) and soft custom insole (CSI)) and control insole (CI) at their preferred speed. Peak pressure, mean pressure, maximum force, pressure-time integral were collected to analyze using SPSS. The plantar pressure of forefoot and medial midfoot were significantly increased and of lateral forefoot and lateral midfoot were decreased by both kinds of custom insoles in running tests. While the CHI significantly increased plantar pressure of the medial forefoot compared with the CSI and CI both in walking and running tests. The custom insoles showed significantly higher plantar pressure on medial midfoot. But CSI seems better than CHI because of redistributing the plantar pressure by increasing the plantar pressure of whole forefoot. Moreover, CSI showed significantly lower plantar pressure than CI and CHI at lateral midfoot during running test. The CHI causes significant high pressure at medial forefoot (MF), which may raise the risk of forefoot pain.


2011 ◽  
Vol 383-390 ◽  
pp. 5148-5153
Author(s):  
Ye Min Guo ◽  
Lan Mei Wang ◽  
Yun Yan Ge

According to the requirement of measurement of plantar pressure, this thesis puts forward a plan to construct a new insole plantar pressure system based on multifunction data acquisition modular and Test Point. Then the hardware part and software part are designed and developed respectively. The piezoelectric ceramic type sensors are designed, manufactured and calibrated according to scientific methods. Meanwhile, the DAQ card is selected carefully. Of course, the software part is developed based on Test Point. A series of tests are performed in order to validate the function of the plantar pressure measurement system. The results satisfy the anticipated design requirements. At last, the problems and application trend of the plantar pressure system are predicted.


Author(s):  
Danielle M. Torp ◽  
Abbey C. Thomas ◽  
Tricia Hubbard-Turner ◽  
Luke Donovan

Context Altered biomechanics displayed by individuals with chronic ankle instability (CAI) is a possible cause of recurring injuries and posttraumatic osteoarthritis. Current interventions are unable to modify aberrant biomechanics, leading to research efforts to determine if real-time external biofeedback can result in changes. Objective To determine the real-time effects of visual and auditory biofeedback on functional-task biomechanics in individuals with CAI. Design Crossover study. Setting Laboratory. Patients or Other Participants Nineteen physically active adults with CAI (7 men, 12 women; age = 23.95 ± 5.52 years, height = 168.87 ± 6.94 cm, mass = 74.74 ± 15.41 kg). Intervention(s) Participants randomly performed single-limb static balance, step downs, lateral hops, and forward lunges during a baseline and 2 biofeedback conditions. Visual biofeedback was given through a crossline laser secured to the dorsum of the foot. Auditory biofeedback was given through a pressure sensor placed under the lateral foot and connected to a buzzer that elicited a noise when pressure exceeded the set threshold. Cues provided during the biofeedback conditions were used to promote proper biomechanics during each task. Main Outcome Measure(s) We measured the location of center-of-pressure (COP) data points during balance with eyes open and eyes closed for each condition. Plantar pressure in the lateral column of the foot during functional tasks was extracted. Secondary outcomes of interest were COP area and velocity, time to boundary during static balance, and additional plantar-pressure measures. Results Both biofeedback conditions reduced COP in the anterolateral quadrant while increasing COP in the posteromedial quadrant of the foot during eyes-open balance. Visual biofeedback increased lateral heel pressure and the lateral heel and midfoot pressure-time integral during hops. The auditory condition produced similar changes during the eyes-closed trials. Auditory biofeedback increased heel pressure during step downs and decreased the lateral forefoot pressure-time integral during lunges. Conclusions Real-time improvements in balance strategies were observed during both external biofeedback conditions. Visual and auditory biofeedback appeared to effectively moderate different functional-task biomechanics.


Sign in / Sign up

Export Citation Format

Share Document