Computational Models of Dendritic Morphology: From Parsimonious Description to Biological Insight

2010 ◽  
Vol 22 (4) ◽  
pp. 1086-1111 ◽  
Author(s):  
Jen-Yung Chen

In the brain, complex information interactions among neurons span several spatial and temporal scales, making it extremely difficult to identify the principles governing neural information processing. In this study, we used computational models to investigate the impact of dendritic morphology and synaptic topology on patterns of neuronal firing. We first constructed Hodgkin-Huxley-type neuron models that possessed dendrites with different morphological features. We then simulated the responses of these neurons to a number of spatiotemporal input patterns. The similarity between neuronal responses to different patterned inputs was effectively evaluated by a novel combination of metric space analysis and multidimensional scaling analyses. The results showed that neurons with different morphological or anatomical features exhibit differences in stimulus-specific temporal encoding and firing reliability. These findings support the idea that in addition to biophysical membrane properties, the dendritic morphology and the synaptic topology of a neuron can play a significant role in neuronal information processing and may directly contribute to various brain functions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Bo M. B. Bekkouche ◽  
Patrick A. Shoemaker ◽  
Joseph M. Fabian ◽  
Elisa Rigosi ◽  
Steven D. Wiederman ◽  
...  

Dragonflies are highly skilled and successful aerial predators that are even capable of selectively attending to one target within a swarm. Detection and tracking of prey is likely to be driven by small target motion detector (STMD) neurons identified from several insect groups. Prior work has shown that dragonfly STMD responses are facilitated by targets moving on a continuous path, enhancing the response gain at the present and predicted future location of targets. In this study, we combined detailed morphological data with computational modeling to test whether a combination of dendritic morphology and nonlinear properties of NMDA receptors could explain these observations. We developed a hybrid computational model of neurons within the dragonfly optic lobe, which integrates numerical and morphological components. The model was able to generate potent facilitation for targets moving on continuous trajectories, including a localized spotlight of maximal sensitivity close to the last seen target location, as also measured during in vivo recordings. The model did not, however, include a mechanism capable of producing a traveling or spreading wave of facilitation. Our data support a strong role for the high dendritic density seen in the dragonfly neuron in enhancing non-linear facilitation. An alternative model based on the morphology of an unrelated type of motion processing neuron from a dipteran fly required more than three times higher synaptic gain in order to elicit similar levels of facilitation, despite having only 20% fewer synapses. Our data support a potential role for NMDA receptors in target tracking and also demonstrate the feasibility of combining biologically plausible dendritic computations with more abstract computational models for basic processing as used in earlier studies.


2021 ◽  
Author(s):  
Bo M. B. Bekkouche ◽  
Patrick A. Shoemaker ◽  
Joseph M. Fabian ◽  
Elisa Rigosi ◽  
Steven D. Wiederman ◽  
...  

AbstractDragonflies are highly skilled and successful aerial predators that are even capable of selectively attending to one target within a swarm. Detection and tracking prey is likely to be driven by small target motion detector (STMD) neurons identified from several insect groups. Prior work has shown that dragonfly STMD responses are facilitated by targets moving on a continuous path, enhancing the response gain at the present and predicted future location of targets. In this study, we combined detailed morphological data with computational modelling to test whether a combination of dendritic morphology combined with the nonlinear properties of NMDA receptors could explain these observations. We developed a hybrid neuronal model of neurons within the dragonfly optic lobe, which integrates numerical and morphological components. The model was able to generate potent facilitation for targets moving on continuous trajectories, including a localized spotlight of maximal sensitivity close to the last seen target location, as also measured duringin vivorecordings. The model did not, however, include a mechanism capable of producing a traveling or spreading wave of facilitation. Our data support a strong role for the high dendritic density seen in the dragonfly neuron in enhancing non-linear facilitation. An alternative model based on morphology of an unrelated type of motion processing neuron from a dipteran fly required more than 3 times higher synaptic gain in order to elicit similar levels of facilitation, despite having only 20% fewer synapses. Our data supports a potential role for NMDA receptors in target tracking and also demonstrates the feasibility of combining biologically plausible dendritic computations with more abstract computational models for basic processing as used in earlier studies.


Author(s):  
Kim Uittenhove ◽  
Patrick Lemaire

In two experiments, we tested the hypothesis that strategy performance on a given trial is influenced by the difficulty of the strategy executed on the immediately preceding trial, an effect that we call strategy sequential difficulty effect. Participants’ task was to provide approximate sums to two-digit addition problems by using cued rounding strategies. Results showed that performance was poorer after a difficult strategy than after an easy strategy. Our results have important theoretical and empirical implications for computational models of strategy choices and for furthering our understanding of strategic variations in arithmetic as well as in human cognition in general.


Author(s):  
Manuel Perea ◽  
Victoria Panadero

The vast majority of neural and computational models of visual-word recognition assume that lexical access is achieved via the activation of abstract letter identities. Thus, a word’s overall shape should play no role in this process. In the present lexical decision experiment, we compared word-like pseudowords like viotín (same shape as its base word: violín) vs. viocín (different shape) in mature (college-aged skilled readers), immature (normally reading children), and immature/impaired (young readers with developmental dyslexia) word-recognition systems. Results revealed similar response times (and error rates) to consistent-shape and inconsistent-shape pseudowords for both adult skilled readers and normally reading children – this is consistent with current models of visual-word recognition. In contrast, young readers with developmental dyslexia made significantly more errors to viotín-like pseudowords than to viocín-like pseudowords. Thus, unlike normally reading children, young readers with developmental dyslexia are sensitive to a word’s visual cues, presumably because of poor letter representations.


Sign in / Sign up

Export Citation Format

Share Document