scholarly journals Sgol2 provides a regulatory platform that coordinates essential cell cycle processes during meiosis I in oocytes

eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Ahmed Rattani ◽  
Magda Wolna ◽  
Mickael Ploquin ◽  
Wolfgang Helmhart ◽  
Seamus Morrone ◽  
...  

Accurate chromosome segregation depends on coordination between cohesion resolution and kinetochore-microtubule interactions (K-fibers), a process regulated by the spindle assembly checkpoint (SAC). How these diverse processes are coordinated remains unclear. We show that in mammalian oocytes Shugoshin-like protein 2 (Sgol2) in addition to protecting cohesin, plays an important role in turning off the SAC, in promoting the congression and bi-orientation of bivalents on meiosis I spindles, in facilitating formation of K-fibers and in limiting bivalent stretching. Sgol2’s ability to protect cohesin depends on its interaction with PP2A, as is its ability to silence the SAC, with the latter being mediated by direct binding to Mad2. In contrast, its effect on bivalent stretching and K-fiber formation is independent of PP2A and mediated by recruitment of MCAK and inhibition of Aurora C kinase activity respectively. By virtue of its multiple interactions, Sgol2 links many of the processes essential for faithful chromosome segregation.

2017 ◽  
Vol 216 (12) ◽  
pp. 3949-3957 ◽  
Author(s):  
Simon I.R. Lane ◽  
Keith T. Jones

The spindle assembly checkpoint (SAC) prevents chromosome missegregation by coupling anaphase onset with correct chromosome attachment and tension to microtubules. It does this by generating a diffusible signal from free kinetochores into the cytoplasm, inhibiting the anaphase-promoting complex (APC). The volume in which this signal remains effective is unknown. This raises the possibility that cell volume may be the reason the SAC is weak, and chromosome segregation error-prone, in mammalian oocytes. Here, by a process of serial bisection, we analyzed the influence of oocyte volume on the ability of the SAC to inhibit bivalent segregation in meiosis I. We were able to generate oocytes with cytoplasmic volumes reduced by 86% and observed changes in APC activity consistent with increased SAC control. However, bivalent biorientation remained uncoupled from APC activity, leading to error-prone chromosome segregation. We conclude that volume is one factor contributing to SAC weakness in oocytes. However, additional factors likely uncouple chromosome biorientation with APC activity.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 801-801
Author(s):  
Rikki Enzor ◽  
Zahi Abdul Sater ◽  
Donna Cerabona ◽  
Zejin Sun ◽  
Su-jung Park ◽  
...  

Abstract Fanconi anemia (FA) is a heterogenous genome instability syndrome with a high risk of cancer. The FA proteins are essential for interphase DNA damage repair. However, it is incompletely understood why FA-deficient cells also develop gross aneuploidy and multinucleation, which are symptoms of error-prone chromosome segregation. Emerging evidence indicates that the FA signaling network functions as a guardian of the genome throughout the cell cycle, including chromosome segregation during mitosis. However, the mechanistic aspects of the critical role of the FA signaling in mitosis remain poorly understood. We have recently shown that the FA signaling network localizes to the mitotic apparatus to control the spindle assembly checkpoint and centrosome maintenance (J Clin Invest 2013, in press). The spindle assembly checkpoint (SAC) is a complex tumor suppressor signaling network that prevents premature separation of sister chromatids by delaying the metaphase-to-anaphase transition until all the kinetochores are properly attached to the mitotic spindle. Since weakened SAC promotes stochastic chromosome segregation, mutagenesis and cancer, these findings shed new light on the role of FA signaling in maintenance of genomic stability. We found the subcellular localization of FA proteins to the mitotic apparatus is spatiotemporally regulated as cells divide. Our new data revealed the pathways connecting the FANCA protein with canonical mitotic phosphosignaling networks. We have employed unbiased kinome-wide phospho-mass spectrometry to compare the landscape of abnormalities of mitotic signaling pathways in primary FANCA-/- patient cells and gene-corrected isogenic cells. These experiments led us to identify and quantify a wide range of phosphorylation abnormalities of multiple FANCA-dependent centrosome-, kinetochore- and chromosome-associated regulators of mitosis. Our data illuminated the role for FA signaling in three critical stages of cell division: (1) the spindle assembly checkpoint, (2) anaphase and (3) cytokinesis. Thus, we employed live phase-contrast imaging of primary FANCA-/- patient cells in comparison to gene-corrected cells to separately quantify aberrations in (1) chromosome congression and metaphase-anaphase transition (SAC malfunction), (2) execution of anaphase and (3) completion of cytokinesis. Our findings further our understanding of human cell cycle control and provide new insights into the origins of genomic instability in Fanconi anemia by establishing mechanistic connection between the FANCA protein and key mitotic signaling networks. The identification of cell division pathways regulated by FANCA has implications for future targeted drug development in Fanconi anemia and FA-deficient malignancies in the general population. Disclosures: No relevant conflicts of interest to declare.


PLoS ONE ◽  
2007 ◽  
Vol 2 (11) ◽  
pp. e1165 ◽  
Author(s):  
Théodora Niault ◽  
Khaled Hached ◽  
Rocío Sotillo ◽  
Peter K. Sorger ◽  
Bernard Maro ◽  
...  

Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 489-503 ◽  
Author(s):  
Karen E Ross ◽  
Orna Cohen-Fix

Abstract Cdh1p, a substrate specificity factor for the cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), promotes exit from mitosis by directing the degradation of a number of proteins, including the mitotic cyclins. Here we present evidence that Cdh1p activity at the M/G1 transition is important not only for mitotic exit but also for high-fidelity chromosome segregation in the subsequent cell cycle. CDH1 showed genetic interactions with MAD2 and PDS1, genes encoding components of the mitotic spindle assembly checkpoint that acts at metaphase to prevent premature chromosome segregation. Unlike cdh1Δ and mad2Δ single mutants, the mad2Δ cdh1Δ double mutant grew slowly and exhibited high rates of chromosome and plasmid loss. Simultaneous deletion of PDS1 and CDH1 caused extensive chromosome missegregation and cell death. Our data suggest that at least part of the chromosome loss can be attributed to kinetochore/spindle problems. Our data further suggest that Cdh1p and Sic1p, a Cdc28p/Clb inhibitor, have overlapping as well as nonoverlapping roles in ensuring proper chromosome segregation. The severe growth defects of both mad2Δ cdh1Δ and pds1Δ cdh1Δ strains were rescued by overexpressing Swe1p, a G2/M inhibitor of the cyclin-dependent kinase, Cdc28p/Clb. We propose that the failure to degrade cyclins at the end of mitosis leaves cdh1Δ mutant strains with abnormal Cdc28p/Clb activity that interferes with proper chromosome segregation.


2011 ◽  
Vol 44 (5) ◽  
pp. 391-400 ◽  
Author(s):  
P. Silva ◽  
J. Barbosa ◽  
A. V. Nascimento ◽  
J. Faria ◽  
R. Reis ◽  
...  

2019 ◽  
Vol 219 (2) ◽  
Author(s):  
Cai Liang ◽  
Zhenlei Zhang ◽  
Qinfu Chen ◽  
Haiyan Yan ◽  
Miao Zhang ◽  
...  

Aurora B kinase plays an essential role in chromosome bi-orientation, which is a prerequisite for equal segregation of chromosomes during mitosis. However, it remains largely unclear whether centromere-localized Aurora B is required for faithful chromosome segregation. Here we show that histone H3 Thr-3 phosphorylation (H3pT3) and H2A Thr-120 phosphorylation (H2ApT120) can independently recruit Aurora B. Disrupting H3pT3-mediated localization of Aurora B at the inner centromere impedes the decline in H2ApT120 during metaphase and causes H2ApT120-dependent accumulation of Aurora B at the kinetochore-proximal centromere. Consequently, silencing of the spindle assembly checkpoint (SAC) is delayed, whereas the fidelity of chromosome segregation is negligibly affected. Further eliminating an H2ApT120-dependent pool of Aurora B restores proper timing for SAC silencing but increases chromosome missegregation. Our data indicate that H2ApT120-mediated localization of Aurora B compensates for the loss of an H3pT3-dependent pool of Aurora B to correct improper kinetochore–microtubule attachments. This study provides important insights into how centromeric Aurora B regulates SAC and kinetochore attachment to microtubules to ensure error-free chromosome segregation.


Cell Cycle ◽  
2005 ◽  
Vol 4 (5) ◽  
pp. 650-653 ◽  
Author(s):  
Hayden A. Homer ◽  
Alex McDougal ◽  
Mark Levasseur ◽  
Mary Herbert

Sign in / Sign up

Export Citation Format

Share Document