scholarly journals Author response: Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila

Author(s):  
Yoshinori Aso ◽  
Divya Sitaraman ◽  
Toshiharu Ichinose ◽  
Karla R Kaun ◽  
Katrin Vogt ◽  
...  
eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Yoshinori Aso ◽  
Divya Sitaraman ◽  
Toshiharu Ichinose ◽  
Karla R Kaun ◽  
Katrin Vogt ◽  
...  

Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chang Zhao ◽  
Yves F. Widmer ◽  
Sören Diegelmann ◽  
Mihai A. Petrovici ◽  
Simon G. Sprecher ◽  
...  

AbstractOlfactory learning and conditioning in the fruit fly is typically modelled by correlation-based associative synaptic plasticity. It was shown that the conditioning of an odor-evoked response by a shock depends on the connections from Kenyon cells (KC) to mushroom body output neurons (MBONs). Although on the behavioral level conditioning is recognized to be predictive, it remains unclear how MBONs form predictions of aversive or appetitive values (valences) of odors on the circuit level. We present behavioral experiments that are not well explained by associative plasticity between conditioned and unconditioned stimuli, and we suggest two alternative models for how predictions can be formed. In error-driven predictive plasticity, dopaminergic neurons (DANs) represent the error between the predictive odor value and the shock strength. In target-driven predictive plasticity, the DANs represent the target for the predictive MBON activity. Predictive plasticity in KC-to-MBON synapses can also explain trace-conditioning, the valence-dependent sign switch in plasticity, and the observed novelty-familiarity representation. The model offers a framework to dissect MBON circuits and interpret DAN activity during olfactory learning.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jessica Mitchell ◽  
Carlas S Smith ◽  
Josh Titlow ◽  
Nils Otto ◽  
Pieter van Velde ◽  
...  

Memory-relevant neuronal plasticity is believed to require local translation of new proteins at synapses. Understanding this process requires the visualization of the relevant mRNAs within these neuronal compartments. Here we used single-molecule fluorescence in situ hybridization (smFISH) to localize mRNAs at subcellular resolution in the adult Drosophila brain. mRNAs for subunits of nicotinic acetylcholine receptors and kinases could be detected within the dendrites of co-labelled Mushroom Body Output Neurons (MBONs) and their relative abundance showed cell-specificity. Moreover, aversive olfactory learning produced a transient increase in the level of CaMKII mRNA within the dendritic compartments of the 52a MBONs. Localization of specific mRNAs in MBONs before and after learning represents a critical step towards deciphering the role of dendritic translation in the neuronal plasticity underlying behavioural change in Drosophila.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jie-Kai Wu ◽  
Chu-Yi Tai ◽  
Kuan-Lin Feng ◽  
Shiu-Ling Chen ◽  
Chun-Chao Chen ◽  
...  

2018 ◽  
Vol 5 (2) ◽  
pp. 171785 ◽  
Author(s):  
Martin F. Strube-Bloss ◽  
Wolfgang Rössler

Flowers attract pollinating insects like honeybees by sophisticated compositions of olfactory and visual cues. Using honeybees as a model to study olfactory–visual integration at the neuronal level, we focused on mushroom body (MB) output neurons (MBON). From a neuronal circuit perspective, MBONs represent a prominent level of sensory-modality convergence in the insect brain. We established an experimental design allowing electrophysiological characterization of olfactory, visual, as well as olfactory–visual induced activation of individual MBONs. Despite the obvious convergence of olfactory and visual pathways in the MB, we found numerous unimodal MBONs. However, a substantial proportion of MBONs (32%) responded to both modalities and thus integrated olfactory–visual information across MB input layers. In these neurons, representation of the olfactory–visual compound was significantly increased compared with that of single components, suggesting an additive, but nonlinear integration. Population analyses of olfactory–visual MBONs revealed three categories: (i) olfactory, (ii) visual and (iii) olfactory–visual compound stimuli. Interestingly, no significant differentiation was apparent regarding different stimulus qualities within these categories. We conclude that encoding of stimulus quality within a modality is largely completed at the level of MB input, and information at the MB output is integrated across modalities to efficiently categorize sensory information for downstream behavioural decision processing.


2013 ◽  
Vol 110 (19) ◽  
pp. 7898-7903 ◽  
Author(s):  
T.-P. Pai ◽  
C.-C. Chen ◽  
H.-H. Lin ◽  
A.-L. Chin ◽  
J. S.-Y. Lai ◽  
...  

2019 ◽  
Author(s):  
Chang Zhao ◽  
Yves F Widmer ◽  
Soeren Diegelmann ◽  
Mihai Petrovici ◽  
Simon G Sprecher ◽  
...  

AbstractOlfactory learning and conditioning in the fruit fly is typically modelled by correlation-based associative synaptic plasticity. It was shown that the conditioning of an odor-evoked response by a shock depends on the connections from Kenyon cells (KC) to mushroom body output neurons (MBONs). Although on the behavioral level conditioning is recognized to be predictive, it remains unclear how MBONs form predictions of aversive or appetitive values (valences) of odors on the circuit level. We present behavioral experiments that are not well explained by associative plasticity between conditioned and unconditioned stimuli, and we suggest two alternative models for how predictions can be formed. In error-driven predictive plasticity, dopaminergic neurons (DANs) represent the error between the predictive odor value and the shock strength. In target-driven predictive plasticity, the DANs represent the target for the predictive MBON activity. Predictive plasticity in KC-to-MBON synapses can also explain trace-conditioning, the valence-dependent sign switch in plasticity, and the observed novelty-familiarity representation. The model offer a framework to dissect MBON circuits and interpret DAN activity during olfactory learning.


Sign in / Sign up

Export Citation Format

Share Document