scholarly journals Drosophila ORB protein in two mushroom body output neurons is necessary for long-term memory formation

2013 ◽  
Vol 110 (19) ◽  
pp. 7898-7903 ◽  
Author(s):  
T.-P. Pai ◽  
C.-C. Chen ◽  
H.-H. Lin ◽  
A.-L. Chin ◽  
J. S.-Y. Lai ◽  
...  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jie-Kai Wu ◽  
Chu-Yi Tai ◽  
Kuan-Lin Feng ◽  
Shiu-Ling Chen ◽  
Chun-Chao Chen ◽  
...  

Author(s):  
Wang-Pao Lee ◽  
Meng-Hsuan Chiang ◽  
Li-Yun Chang ◽  
Wei-Huan Shyu ◽  
Tai-Hsiang Chiu ◽  
...  

Memory consolidation is a time-dependent process through which an unstable learned experience is transformed into a stable long-term memory; however, the circuit and molecular mechanisms underlying this process are poorly understood. The Drosophila mushroom body (MB) is a huge brain neuropil that plays a crucial role in olfactory memory. The MB neurons can be generally classified into three subsets: γ, αβ, and α′β′. Here, we report that water-reward long-term memory (wLTM) consolidation requires activity from α′β′-related mushroom body output neurons (MBONs) in a specific time window. wLTM consolidation requires neurotransmission in MBON-γ3β′1 during the 0–2 h period after training, and neurotransmission in MBON-α′2 is required during the 2–4 h period after training. Moreover, neurotransmission in MBON-α′1α′3 is required during the 0–4 h period after training. Intriguingly, blocking neurotransmission during consolidation or inhibiting serotonin biosynthesis in serotoninergic dorsal paired medial (DPM) neurons also disrupted the wLTM, suggesting that wLTM consolidation requires serotonin signals from DPM neurons. The GFP Reconstitution Across Synaptic Partners (GRASP) data showed the connectivity between DPM neurons and MBON-γ3β′1, MBON-α′2, and MBON-α′1α′3, and RNAi-mediated silencing of serotonin receptors in MBON-γ3β′1, MBON-α′2, or MBON-α′1α′3 disrupted wLTM. Taken together, our results suggest that serotonin released from DPM neurons modulates neuronal activity in MBON-γ3β′1, MBON-α′2, and MBON-α′1α′3 at specific time windows, which is critical for the consolidation of wLTM in Drosophila.


2017 ◽  
Author(s):  
Yves F Widmer ◽  
Adem Bilican ◽  
Rémy Bruggmann ◽  
Simon G Sprecher

AbstractMemory formation is achieved by genetically tightly controlled molecular pathways that result in a change of synaptic strength and synapse organization. While for short-term memory traces rapidly acting biochemical pathways are in place, the formation of long-lasting memories requires changes in the transcriptional program of a cell. Although many genes involved in learning and memory formation have been identified, little is known about the genetic mechanisms required for changing the transcriptional program during different phases of long-term memory formation. With Drosophila melanogaster as a model system we profiled transcriptomic changes in the mushroom body, a memory center in the fly brain, at distinct time intervals during long-term memory formation using the targeted DamID technique. We describe the gene expression profiles during these phases and tested 33 selected candidate genes for deficits in long-term memory formation using RNAi knockdown. We identified 10 genes that enhance or decrease memory when knocked-down in the mushroom body. For vajk-1 and hacd1, the two strongest hits, we gained further support for their crucial role in learning and forgetting. These findings show that profiling gene expression changes in specific cell-types harboring memory traces provides a powerful entry point to identify new genes involved in learning and memory. The presented transcriptomic data may further be used as resource to study genes acting at different memory phases.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Moonseok Choi ◽  
Sang-Min Lee ◽  
Dongsoo Kim ◽  
Heh-In Im ◽  
Hye-Sun Kim ◽  
...  

AbstractThe morphological dynamics of astrocytes are altered in the hippocampus during memory induction. Astrocyte–neuron interactions on synapses are called tripartite synapses. These control the synaptic function in the central nervous system. Astrocytes are activated in a reactive state by STAT3 phosphorylation in 5XFAD mice, an Alzheimer’s disease (AD) animal model. However, changes in astrocyte–neuron interactions in reactive or resting-state astrocytes during memory induction remain to be defined. Here, we investigated the time-dependent changes in astrocyte morphology and the number of astrocyte–neuron interactions in the hippocampus over the course of long-term memory formation in 5XFAD mice. Hippocampal-dependent long-term memory was induced using a contextual fear conditioning test in 5XFAD mice. The number of astrocytic processes increased in both wild-type and 5XFAD mice during memory formation. To assess astrocyte–neuron interactions in the hippocampal dentate gyrus, we counted the colocalization of glial fibrillary acidic protein and postsynaptic density protein 95 via immunofluorescence. Both groups revealed an increase in astrocyte–neuron interactions after memory induction. At 24 h after memory formation, the number of tripartite synapses returned to baseline levels in both groups. However, the total number of astrocyte–neuron interactions was significantly decreased in 5XFAD mice. Administration of Stattic, a STAT3 phosphorylation inhibitor, rescued the number of astrocyte–neuron interactions in 5XFAD mice. In conclusion, we suggest that a decreased number of astrocyte–neuron interactions may underlie memory impairment in the early stages of AD.


Cell Reports ◽  
2013 ◽  
Vol 4 (6) ◽  
pp. 1082-1089 ◽  
Author(s):  
Ying Tan ◽  
Dinghui Yu ◽  
Germain U. Busto ◽  
Curtis Wilson ◽  
Ronald L. Davis

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Pierre-Yves Plaçais ◽  
Éloïse de Tredern ◽  
Lisa Scheunemann ◽  
Séverine Trannoy ◽  
Valérie Goguel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document