scholarly journals Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Jeffrey C Erlich ◽  
Bingni W Brunton ◽  
Chunyu A Duan ◽  
Timothy D Hanks ◽  
Carlos D Brody

Numerous brain regions have been shown to have neural correlates of gradually accumulating evidence for decision-making, but the causal roles of these regions in decisions driven by accumulation of evidence have yet to be determined. Here, in rats performing an auditory evidence accumulation task, we inactivated the frontal orienting fields (FOF) and posterior parietal cortex (PPC), two rat cortical regions that have neural correlates of accumulating evidence and that have been proposed as central to decision-making. We used a detailed model of the decision process to analyze the effect of inactivations. Inactivation of the FOF induced substantial performance impairments that were quantitatively best described as an impairment in the output pathway of an evidence accumulator with a long integration time constant (>240 ms). In contrast, we found a minimal role for PPC in decisions guided by accumulating auditory evidence, even while finding a strong role for PPC in internally-guided decisions.

2014 ◽  
Author(s):  
Jeffrey C Erlich ◽  
Bingni W Brunton ◽  
Chunyu A Duan ◽  
Timothy D Hanks ◽  
Carlos D Brody

Numerous brain regions have been shown to have neural correlates of gradually accumulating evidence for decision-making, but the causal roles of these regions in decisions driven by accumulation of evi- dence have yet to be determined. Here, in rats performing an auditory evidence accumulation task, we inactivated the frontal orienting fields (FOF) and posterior parietal cortex (PPC), two rat cortical regions that have neural correlates of accumulating evidence and that have been proposed as central to decision-making. We used a detailed model of the decision process to analyze the effect of inactivations. Inactivation of the FOF induced substantial performance impairments that were quantitatively best de- scribed as an impairment in the output pathway of an evidence accumulator with a long integration time constant (>240ms). In contrast, we found a minimal role for PPC in decisions guided by accumulating auditory evidence, even while finding a strong role for PPC in internally-guided decisions.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Michael M Yartsev ◽  
Timothy D Hanks ◽  
Alice Misun Yoon ◽  
Carlos D Brody

A broad range of decision-making processes involve gradual accumulation of evidence over time, but the neural circuits responsible for this computation are not yet established. Recent data indicate that cortical regions that are prominently associated with accumulating evidence, such as the posterior parietal cortex and the frontal orienting fields, may not be directly involved in this computation. Which, then, are the regions involved? Regions that are directly involved in evidence accumulation should directly influence the accumulation-based decision-making behavior, have a graded neural encoding of accumulated evidence and contribute throughout the accumulation process. Here, we investigated the role of the anterior dorsal striatum (ADS) in a rodent auditory evidence accumulation task using a combination of behavioral, pharmacological, optogenetic, electrophysiological and computational approaches. We find that the ADS is the first brain region known to satisfy the three criteria. Thus, the ADS may be the first identified node in the network responsible for evidence accumulation.


2021 ◽  
Author(s):  
Brian DePasquale ◽  
Jonathan W Pillow ◽  
Carlos Brody

Accumulating evidence in service of sensory decision making is a core cognitive function. However, previous work has focused either on the dynamics of neural activity during decision-making or on models of evidence accumulation governing behavior. We unify these two perspectives by introducing an evidence-accumulation framework that simultaneously describes multi-neuron population spiking activity and dynamic stimulus-driven behavior during sensory decision-making. We apply our method to behavioral choices and neural activity recorded from three brain regions - the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS) - while rats performed a pulse-based accumulation task. The model accurately captures the relationship between stimuli and neural activity, the coordinated activity of neural populations, and the distribution of animal choices in response to the stimulus. Model fits show strikingly distinct accumulation models expressed within each brain region, and that all differ strongly from the accumulation strategy expressed at the level of choices. In particular, the FOF exhibited a suboptimal 'primacy' strategy, where early sensory evidence was favored. Including neural data in the model led to improved prediction of the moment-by-moment value of accumulated evidence and the intended-and ultimately made-choice of the animal. Our approach offers a window into the neural representation of accumulated evidence and provides a principled framework for incorporating neural responses into accumulation models.


2018 ◽  
Author(s):  
Michael M. Yartsev ◽  
Timothy D. Hanks ◽  
Alice M. Yoon ◽  
Carlos D. Brody

A broad range of decision-making processes involve gradual accumulation of evidence over time, but the neural circuits responsible for this computation are not yet established. Recent data indicates that cortical regions prominently associated with accumulating evidence, such as posterior parietal cortex and the frontal orienting fields, are not necessary for computing it. Which, then, are the regions responsible? Regions directly involved in evidence accumulation should satisfy the criteria of being necessary for accumulation-based decision-making behavior, having a graded neural encoding of accumulated evidence and causal contributing throughout the accumulation process. Here, we investigated the role of the anterior dorsal striatum (ADS) in a rodent auditory evidence accumulation task using a combination of behavioral, pharmacological, optogenetic, electrophysiological and computational approaches. We find that the ADS is the first brain region known to satisfy these criteria. Thus, the ADS may be the first identified node in the network responsible for evidence accumulation.


2017 ◽  
Vol 29 (2) ◽  
pp. 368-381 ◽  
Author(s):  
Jordan E. Pierce ◽  
Jennifer E. McDowell

Cognitive control is engaged to facilitate stimulus–response mappings for novel, complex tasks and supervise performance in unfamiliar, challenging contexts—processes supported by pFC, ACC, and posterior parietal cortex. With repeated task practice, however, the appropriate task set can be selected in a more automatic fashion with less need for top–down cognitive control and weaker activation in these brain regions. One model system for investigating cognitive control is the ocular motor circuitry underlying saccade production, with basic prosaccade trials (look toward a stimulus) and complex antisaccade trials (look to the mirror image location) representing low and high levels of cognitive control, respectively. Previous studies have shown behavioral improvements on saccade tasks after practice with contradictory results regarding the direction of functional MRI BOLD signal change. The current study presented healthy young adults with prosaccade and antisaccade trials in five mixed blocks with varying probability of each trial type (0%, 25%, 50%, 75%, or 100% anti vs. pro) at baseline and posttest MRI sessions. Between the scans, participants practiced either the specific probability blocks used during testing or only a general 100% antisaccade block. Results indicated an overall reduction in BOLD activation within pFC, ACC, and posterior parietal cortex and across saccade circuitry for antisaccade trials. The specific practice group showed additional regions including ACC, insula, and thalamus with an activation decrease after practice, whereas the general practice group showed a little change from baseline in those clusters. These findings demonstrate that cognitive control regions recruited to support novel task behaviors were engaged less after practice, especially with exposure to mixed task contexts rather than a novel task in isolation.


2010 ◽  
Vol 104 (4) ◽  
pp. 2169-2177 ◽  
Author(s):  
Adrian L. Williams ◽  
Andrew T. Smith

Neurons that signal eye position are thought to make a vital contribution to distinguishing real world motion from retinal motion caused by eye movements, but relatively little is known about such neurons in the human brain. Here we present data from functional MRI experiments that are consistent with the existence of neurons sensitive to eye position in darkness in the human posterior parietal cortex. We used the enhanced sensitivity of multivoxel pattern analysis (MVPA) techniques, combined with a searchlight paradigm, to isolate brain regions sensitive to direction of gaze. During data acquisition, participants were cued to direct their gaze to the left or right for sustained periods as part of a block-design paradigm. Following the exclusion of saccade-related activity from the data, the multivariate analysis showed sensitivity to tonic eye position in two localized posterior parietal regions, namely the dorsal precuneus and, more weakly, the posterior aspect of the intraparietal sulcus. Sensitivity to eye position was also seen in anterior portions of the occipital cortex. The observed sensitivity of visual cortical neurons to eye position, even in the total absence of visual stimulation, is possibly a result of feedback from posterior parietal regions that receive eye position signals and explicitly encode direction of gaze.


1997 ◽  
Vol 352 (1360) ◽  
pp. 1429-1436 ◽  
Author(s):  
Michael A. Arbib

This paper explores the hypothesis that various subregions (but by no means all) of the posterior parietal cortex are specialized to process visual information to extract a variety of affordances for behaviour. Two biologically based models of regions of the posterior parietal cortex of the monkey are introduced. The model of the lateral intraparietal area (LIP) emphasizes its roles in dynamic remapping of the representation of targets during a double saccade task, and in combining stored, updated input with current visual input. The model of the anterior intraparietal area (AIP) addresses parietal–premotor interactions involved in grasping, and analyses the interaction between the AIP and premotor area F5. The model represents the role of other intraparietal areas working in concert with the inferotemporal cortex as well as with corollary discharge from F5 to provide and augment the affordance information in the AIP, and suggests how various constraints may resolve the action opportunities provided by multiple affordances. Finally, a systems–level model of hippocampo–parietal interactions underlying rat navigation is developed, motivated by the monkey data used in developing the above two models as well as by data on neurons in the posterior parietal cortex of the monkey that are sensitive to visual motion. The formal similarity between dynamic remapping (primate saccades) and path integration (rat navigation) is noted, and certain available data on rat posterior parietal cortex in terms of affordances for locomotion are explained. The utility of further modelling, linking the World Graph model of cognitive maps for motivated behaviour with hippocampal–parietal interactions involved in navigation, is also suggested. These models demonstrate that posterior parietal cortex is not only itself a network of interacting subsystems, but functions through cooperative computation with many other brain regions.


2016 ◽  
Author(s):  
Jason Samaha ◽  
Olivia Gosseries ◽  
Bradley R. Postle

AbstractMagnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes, but neural correlates of phosphene perception preceding and succeeding stimulation of both areas are unknown. Using near-threshold TMS with concurrent electroencephalography (EEG) recordings, we uncover oscillatory brain dynamics that covary, on single trials, with the perception of phosphenes following occipital and parietal TMS. Prestimulus power and phase predominantly in the alpha-band (8-13 Hz) predicted occipital TMS phosphenes, whereas higher frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (~5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception using near-threshold visual stimuli and speak to the possible early onset of visual consciousness. The differential pattern of prestimulus predictors of phosphene perception suggest that distinct frequencies reflect cortical excitability within different cortical regions, and that the alpha-band rhythm, long thought of as a general index of cortical inhibition, may not reflect excitability of posterior parietal cortex.Significance statementAlpha-band oscillations are thought to reflect cortical excitability and are therefor suggested to play an important role in gating information transmission across cortex. We directly probe cortical excitability in human occipital and parietal cortex and observed that whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes, which were manifest in both early and late patterns of evoked activity, shedding light on the neural correlates of consciousness. Our findings prompt revision of the notion that alpha activity reflects inhibition across all of cortex and suggests instead that excitability in different regions is reflected in distinct frequency bands.


Sign in / Sign up

Export Citation Format

Share Document