scholarly journals Author response: Mutational phospho-mimicry reveals a regulatory role for the XRCC4 and XLF C-terminal tails in modulating DNA bridging during classical non-homologous end joining

2017 ◽  
Author(s):  
Davide Normanno ◽  
Aurélie Négrel ◽  
Abinadabe J de Melo ◽  
Stéphane Betzi ◽  
Katheryn Meek ◽  
...  
2020 ◽  
Author(s):  
Sean M Carney ◽  
Andrew T Moreno ◽  
Sadie C Piatt ◽  
Metztli Cisneros-Aguirre ◽  
Felicia Wednesday Lopezcolorado ◽  
...  

2020 ◽  
Vol 9 ◽  
Author(s):  
Jerome Lacombe ◽  
Titouan Cretignier ◽  
Laetitia Meli ◽  
E. M. Kithsiri Wijeratne ◽  
Jean-Luc Veuthey ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1506
Author(s):  
Angelos Papaspyropoulos ◽  
Nefeli Lagopati ◽  
Ioanna Mourkioti ◽  
Andriani Angelopoulou ◽  
Spyridon Kyriazis ◽  
...  

Protection of genome integrity is vital for all living organisms, particularly when DNA double-strand breaks (DSBs) occur. Eukaryotes have developed two main pathways, namely Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR), to repair DSBs. While most of the current research is focused on the role of key protein players in the functional regulation of DSB repair pathways, accumulating evidence has uncovered a novel class of regulating factors termed non-coding RNAs. Non-coding RNAs have been found to hold a pivotal role in the activation of DSB repair mechanisms, thereby safeguarding genomic stability. In particular, long non-coding RNAs (lncRNAs) have begun to emerge as new players with vast therapeutic potential. This review summarizes important advances in the field of lncRNAs, including characterization of recently identified lncRNAs, and their implication in DSB repair pathways in the context of tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document