scholarly journals Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Haley Hieronymus ◽  
Rajmohan Murali ◽  
Amy Tin ◽  
Kamlesh Yadav ◽  
Wassim Abida ◽  
...  

The level of copy number alteration (CNA), termed CNA burden, in the tumor genome is associated with recurrence of primary prostate cancer. Whether CNA burden is associated with prostate cancer survival or outcomes in other cancers is unknown. We analyzed the CNA landscape of conservatively treated prostate cancer in a biopsy and transurethral resection cohort, reflecting an increasingly common treatment approach. We find that CNA burden is prognostic for cancer-specific death, independent of standard clinical prognosticators. More broadly, we find CNA burden is significantly associated with disease-free and overall survival in primary breast, endometrial, renal clear cell, thyroid, and colorectal cancer in TCGA cohorts. To assess clinical applicability, we validated these findings in an independent pan-cancer cohort of patients whose tumors were sequenced using a clinically-certified next generation sequencing assay (MSK-IMPACT), where prognostic value varied based on cancer type. This prognostic association was affected by incorporating tumor purity in some cohorts. Overall, CNA burden of primary and metastatic tumors is a prognostic factor, potentially modulated by sample purity and measurable by current clinical sequencing.

Author(s):  
Haley Hieronymus ◽  
Rajmohan Murali ◽  
Amy Tin ◽  
Kamlesh Yadav ◽  
Wassim Abida ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Erik van Dijk ◽  
Tom van den Bosch ◽  
Kristiaan J. Lenos ◽  
Khalid El Makrini ◽  
Lisanne E. Nijman ◽  
...  

AbstractSurvival rates of cancer patients vary widely within and between malignancies. While genetic aberrations are at the root of all cancers, individual genomic features cannot explain these distinct disease outcomes. In contrast, intra-tumour heterogeneity (ITH) has the potential to elucidate pan-cancer survival rates and the biology that drives cancer prognosis. Unfortunately, a comprehensive and effective framework to measure ITH across cancers is missing. Here, we introduce a scalable measure of chromosomal copy number heterogeneity (CNH) that predicts patient survival across cancers. We show that the level of ITH can be derived from a single-sample copy number profile. Using gene-expression data and live cell imaging we demonstrate that ongoing chromosomal instability underlies the observed heterogeneity. Analysing 11,534 primary cancer samples from 37 different malignancies, we find that copy number heterogeneity can be accurately deduced and predicts cancer survival across tissues of origin and stages of disease. Our results provide a unifying molecular explanation for the different survival rates observed between cancer types.


Author(s):  
Luan Nguyen ◽  
John Martens ◽  
Arne Van Hoeck ◽  
Edwin Cuppen

AbstractHomologous recombination deficiency (HRD) results in impaired double strand break repair and is a frequent driver of tumorigenesis. Here, we developed a genome-wide mutational scar-based pan-cancer Classifier of HOmologous Recombination Deficiency (CHORD) that can discriminate BRCA1- and BRCA2-subtypes. Analysis of a metastatic (n=3,504) and primary (n=1,854) pan-cancer cohort revealed HRD was most frequent in ovarian and breast cancer, followed by pancreatic and prostate cancer. Biallelic inactivation of BRCA1, BRCA2, RAD51C or PALB2 was the most common genetic cause of HRD, with RAD51C and PALB2 inactivation resulting in BRCA2-type HRD. While the specific genetic cause of HRD was cancer type specific, biallelic inactivation was predominantly associated with loss-of-heterozygosity (LOH), with increased contribution of deep deletions in prostate cancer. Our results demonstrate the value of pan-cancer genomics-based HRD testing and its potential diagnostic value for patient stratification towards treatment with e.g. poly ADP-ribose polymerase inhibitors (PARPi).


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Luan Nguyen ◽  
John W. M. Martens ◽  
Arne Van Hoeck ◽  
Edwin Cuppen

Abstract Homologous recombination deficiency (HRD) results in impaired double strand break repair and is a frequent driver of tumorigenesis. Here, we develop a genome-wide mutational scar-based pan-cancer Classifier of HOmologous Recombination Deficiency (CHORD) that can discriminate BRCA1- and BRCA2-subtypes. Analysis of a metastatic (n = 3,504) and primary (n = 1,854) pan-cancer cohort reveals that HRD is most frequent in ovarian and breast cancer, followed by pancreatic and prostate cancer. We identify biallelic inactivation of BRCA1, BRCA2, RAD51C or PALB2 as the most common genetic cause of HRD, with RAD51C and PALB2 inactivation resulting in BRCA2-type HRD. We find that while the specific genetic cause of HRD is cancer type specific, biallelic inactivation is predominantly associated with loss-of-heterozygosity (LOH), with increased contribution of deep deletions in prostate cancer. Our results demonstrate the value of pan-cancer genomics-based HRD testing and its potential diagnostic value for patient stratification towards treatment with e.g. poly ADP-ribose polymerase inhibitors (PARPi).


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Dina Cramer ◽  
Luis Serrano ◽  
Martin H Schaefer

Copy number alterations (CNAs) in cancer patients show a large variability in their number, length and position, but the sources of this variability are not known. CNA number and length are linked to patient survival, suggesting clinical relevance. We have identified genes that tend to be mutated in samples that have few or many CNAs, which we term CONIM genes (COpy Number Instability Modulators). CONIM proteins cluster into a densely connected subnetwork of physical interactions and many of them are epigenetic modifiers. Therefore, we investigated how the epigenome of the tissue-of-origin influences the position of CNA breakpoints and the properties of the resulting CNAs. We found that the presence of heterochromatin in the tissue-of-origin contributes to the recurrence and length of CNAs in the respective cancer type.


2010 ◽  
Vol 13 (3) ◽  
pp. 238-243 ◽  
Author(s):  
H Chen ◽  
W Liu ◽  
W Roberts ◽  
S Hooker ◽  
H Fedor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document