scholarly journals Biochemical reconstitution of branching microtubule nucleation

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Raymundo Alfaro-Aco ◽  
Akanksha Thawani ◽  
Sabine Petry

Microtubules are nucleated from specific locations at precise times in the cell cycle. However, the factors that constitute these microtubule nucleation pathways and their mode of action still need to be identified. Using purified Xenopus laevis proteins we biochemically reconstitute branching microtubule nucleation, which is critical for chromosome segregation. We found that besides the microtubule nucleator gamma-tubulin ring complex (γ-TuRC), the branching effectors augmin and TPX2 are required to efficiently nucleate microtubules from pre-existing microtubules. TPX2 has the unexpected capacity to directly recruit γ-TuRC as well as augmin, which in turn targets more γ-TuRC along the microtubule lattice. TPX2 and augmin enable γ-TuRC-dependent microtubule nucleation at preferred branching angles of less than 90 degrees from regularly-spaced patches along microtubules. This work provides a blueprint for other microtubule nucleation pathways and helps explain how microtubules are generated in the spindle.

2019 ◽  
Author(s):  
Raymundo Alfaro-Aco ◽  
Akanksha Thawani ◽  
Sabine Petry

AbstractMicrotubules are nucleated from specific locations at precise times in the cell cycle. However, the factors that constitute these microtubule nucleation pathways still need to be identified along with their mode of action. Here, using purified Xenopus laevis proteins we biochemically reconstitute branching microtubule nucleation, a nucleation pathway where microtubules originate from pre-existing microtubules, which is essential for spindle assembly and chromosome segregation. We found that besides the microtubule nucleator gamma-tubulin ring complex (γ-TuRC), the two branching effectors augmin and TPX2 are required to efficiently nucleate branched microtubules. Specifically, TPX2 generates regularly-spaced patches that recruit augmin and γ-TuRC to microtubules, which then nucleate new microtubules at preferred branching angles of less than 90 degrees. Our work demonstrates how γ-TuRC is brought to its nucleation site for branching microtubule nucleation. It provides a blueprint for other microtubule nucleation pathways and for generating a particular microtubule architecture by regulating microtubule nucleation.


1997 ◽  
Vol 110 (20) ◽  
pp. 2533-2545 ◽  
Author(s):  
A.M. Tassin ◽  
C. Celati ◽  
M. Paintrand ◽  
M. Bornens

Although varying in size and complexity, centrosomes have conserved functions throughout the evolutionary range of eukaryotes, and thus may display conserved components. In this work, we took advantage of the recent advances in the isolation of the budding yeast spindle pole body, the development of specific immunological probes and the molecular characterisation of genes involved in spindle pole body duplication or assembly. Screening a monoclonal antibody library against Saccharomyces cerevisiae spindle pole body components, we found that two monoclonal antibodies, directed against two different parts of the yeast Spc110p, decorate the centrosome from mammalian cells in an asymmetrical manner. Western blot experiments identified a 100 kDa protein specifically enriched in centrosome preparations from human cells. This protein is phosphorylated during mitosis and is tightly associated with the centrosome: only denaturing conditions such as 8 M urea were able to solubilise it. Purified immunoglobulins directed against Spc110p inhibit microtubule nucleation on isolated human centrosomes, using brain phosphocellulose-tubulin or Xenopus egg extract tubulin. This result suggested that the centrosomal 100 kDa protein could be involved in a microtubule nucleation complex. To test this hypothesis, we turned to Xenopus species, in which mAb anti-Spc110p decorated centrosomes from somatic cells and identified a 116 kDa protein in egg extract. We performed a partial purification of the gamma-tubulin-ring complex from egg extract. Sucrose gradient sedimentation, immunoprecipitation and native gels demonstrated that the Xenopus 116 kDa protein and gamma-tubulin were found in the same complex. Altogether, these results suggest the existence of an yeast Spc110-related protein in vertebrate centrosomes which is involved in microtubule nucleation.


2015 ◽  
Vol 209 (3) ◽  
pp. 339-348 ◽  
Author(s):  
Suzanna L. Prosser ◽  
Navdeep K. Sahota ◽  
Laurence Pelletier ◽  
Ciaran G. Morrison ◽  
Andrew M. Fry

Nek5 is a poorly characterized member of the NIMA-related kinase family, other members of which play roles in cell cycle progression and primary cilia function. Here, we show that Nek5, similar to Nek2, localizes to the proximal ends of centrioles. Depletion of Nek5 or overexpression of kinase-inactive Nek5 caused unscheduled separation of centrosomes in interphase, a phenotype also observed upon overexpression of active Nek2. However, separated centrosomes that resulted from Nek5 depletion remained relatively close together, exhibited excess recruitment of the centrosome linker protein rootletin, and had reduced levels of Nek2. In addition, Nek5 depletion led to loss of PCM components, including γ-tubulin, pericentrin, and Cdk5Rap2, with centrosomes exhibiting reduced microtubule nucleation. Upon mitotic entry, Nek5-depleted cells inappropriately retained centrosome linker components and exhibited delayed centrosome separation and defective chromosome segregation. Hence, Nek5 is required for the loss of centrosome linker proteins and enhanced microtubule nucleation that lead to timely centrosome separation and bipolar spindle formation in mitosis.


2004 ◽  
Vol 15 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Shin-ichi Kawaguchi ◽  
Yixian Zheng

The centrosome in animal cells provides a major microtubule-nucleating site that regulates the microtubule cytoskeleton temporally and spatially throughout the cell cycle. We report the identification in Drosophila melanogaster of a large coiled-coil centrosome protein that can bind to calmodulin. Biochemical studies reveal that this novel Drosophila centrosome protein, centrosome protein of 309 kDa (CP309), cofractionates with the γ-tubulin ring complex and the centrosome-complementing activity. We show that CP309 is required for microtubule nucleation mediated by centrosomes and that it interacts with the γ-tubulin small complex. These findings suggest that the microtubule-nucleating activity of the centrosome requires the function of CP309.


2014 ◽  
Vol 25 (13) ◽  
pp. 2017-2025 ◽  
Author(s):  
Pengfei Liu ◽  
Yuk-Kwan Choi ◽  
Robert Z. Qi

As the primary microtubule nucleator in animal cells, the γ-tubulin ring complex (γTuRC) plays a crucial role in microtubule organization, but little is known about how the activity of the γTuRC is regulated. Recently, isolated γTuRC was found to contain NME7, a poorly characterized member of the NME family. Here we report that NME7 is a γTuRC component that regulates the microtubule-nucleating activity of the γTuRC. NME7 contains two putative kinase domains, A and B, and shows autophosphorylating activity. Whereas domain A is involved in the autophosphorylation, domain B is inactive. NME7 interacts with the γTuRC through both A and B domains, with Arg-322 in domain B being crucial to the binding. In association with the γTuRC, NME7 localizes to centrosomes throughout the cell cycle and to mitotic spindles during mitosis. Suppression of NME7 expression does not affect γTuRC assembly or localization to centrosomes, but it does impair centrosome-based microtubule nucleation. Of importance, wild-type NME7 promotes γTuRC-dependent nucleation of microtubules, but kinase-deficient NME7 does so only poorly. These results suggest that NME7 functions in the γTuRC in a kinase-dependent manner to facilitate microtubule nucleation.


2019 ◽  
Vol 70 (12) ◽  
pp. 3035-3041
Author(s):  
Juan Tian ◽  
Zhaosheng Kong

Abstract Microtubule-dependent microtubule nucleation occurs on the lateral surface of pre-existing microtubules and provides a highly efficient means of amplifying their populations and reorganizing their architectures. The γ‑tubulin ring complex serves as the template to initiate nascent microtubule polymerization. Augmin, a hetero-octameric protein complex, acts as a recruiting factor to target the γ‑tubulin ring complex to pre-existing microtubules and trigger new microtubule growth. Although microtubule-dependent microtubule nucleation has been extensively studied in both animal and plant cells, it remains unclear how the augmin complex assembles in plant cells, especially in cell-cycle-specific and cell-type-specific manners, and how its spatial structure orchestrates the nucleation geometry. In this review, we summarize the advances in knowledge of augmin-dependent microtubule nucleation and the regulation of its geometry, and highlight recent findings and emerging questions concerning the role of the augmin complex in establishing microtubule arrays and the cell-cycle-specific composition of augmin in plant cells.


1997 ◽  
Vol 110 (3) ◽  
pp. 295-300 ◽  
Author(s):  
G. Pereira ◽  
E. Schiebel

In many cell types the formation of microtubules from tubulin subunits is initiated at defined nucleation sites at the centrosome. These sites contain the conserved gamma-tubulin which is in association with additional not very will characterised proteins, identified as components of a gamma-tubulin ring complex from Xenopus egg extracts or from suppressor screens in the yeast Saccharomyces cerevisiae. In this review we discuss two recently proposed models of how the gamma-tubulin complex assists in the assembly of tubulin to form microtubules. These models propose different roles for gamma-tubulin and the other proteins in the complex in tubulin assembly. While the structure and composition of a microtubule nucleation site is becoming clearer, it is still unknown how the cell-cycle dependent regulation of microtubule nucleation sites is achieved and whether they disassemble after microtubule formation in order to allow microtubule fluxes towards the centrosome which have been observed in mitotic cells.


2018 ◽  
Author(s):  
Bradley T. French ◽  
Aaron F. Straight

AbstractChromosome segregation requires the centromere, the site on chromosomes where kinetochores assemble in mitosis to attach chromosomes to the mitotic spindle. Centromere identity is defined epigenetically by the presence of nucleosomes containing the histone H3 variant CENP-A. New CENP-A nucleosome assembly occurs at the centromere every cell cycle during G1, but how CENP-A nucleosome assembly is spatially and temporally restricted remains poorly understood. Centromere recruitment of factors required for CENP-A assembly is mediated in part by the three-protein Mis18 complex (Mis18α, Mis18β, M18BP1). Here we show that Xenopus M18BP1 localizes to centromeres during metaphase - prior to CENP-A assembly - by binding to CENP-C using a highly conserved SANTA domain. We find that Cdk phosphorylation of M18BP1 is necessary for M18BP1 to bind CENP-C and localize to centromeres in metaphase. Surprisingly, mutations which disrupt the metaphase M18BP1/CENP-C interaction cause defective nuclear localization of M18BP1 in interphase, resulting in defective CENP-A nucleosome assembly. We propose that M18BP1 may identify centromeric sites in metaphase for subsequent CENP-A nucleosome assembly in interphase.


2008 ◽  
Vol 19 (3) ◽  
pp. 1220-1229 ◽  
Author(s):  
Christine Didier ◽  
Andreas Merdes ◽  
Jean-Edouard Gairin ◽  
Nabila Jabrane-Ferrat

Centrosomes are dynamic organelles that consist of a pair of cylindrical centrioles, surrounded by pericentriolar material. The pericentriolar material contains factors that are involved in microtubule nucleation and organization, and its recruitment varies during the cell cycle. We report here that proteasome inhibition in HeLa cells induces the accumulation of several proteins at the pericentriolar material, including gamma-tubulin, GCP4, NEDD1, ninein, pericentrin, dynactin, and PCM-1. The effect of proteasome inhibition on centrosome proteins does not require intact microtubules and is reversed after removal of proteasome inhibitors. This accrual of centrosome proteins is paralleled by accumulation of ubiquitin in the same area and increased polyubiquitylation of nonsoluble gamma-tubulin. Cells that have accumulated centrosome proteins in response to proteasome inhibition are impaired in microtubule aster formation. Our data point toward a role of the proteasome in the turnover of centrosome proteins, to maintain proper centrosome function.


Sign in / Sign up

Export Citation Format

Share Document