scholarly journals Author response: CNApp, a tool for the quantification of copy number alterations and integrative analysis revealing clinical implications

2020 ◽  
Author(s):  
Sebastià Franch-Expósito ◽  
Laia Bassaganyas ◽  
Maria Vila-Casadesús ◽  
Eva Hernández-Illán ◽  
Roger Esteban-Fabró ◽  
...  
2018 ◽  
Author(s):  
Sebastià Franch-Expósito ◽  
Laia Bassaganyas ◽  
Maria Vila-Casadesús ◽  
Eva Hernández-Illán ◽  
Roger Esteban-Fabró ◽  
...  

ABSTRACTSomatic copy number alterations (CNAs) are a hallmark of cancer. Although CNA profiles have been established for most human tumor types, their precise role in tumorigenesis as well as their clinical and therapeutic relevance remain largely unclear. Thus, computational and statistical approaches are required to thoroughly define the interplay between CNAs and tumor phenotypes. Here we developed CNApp, a user-friendly web tool that offers sample- and cohort-level computational analyses, allowing a comprehensive and integrative exploration of CNAs with clinical and molecular variables. By using purity-corrected segmented data from multiple genomic platforms, CNApp generates genome-wide profiles, computes CNA scores for broad, focal and global CNA burdens, and uses machine learning-based predictions to classify samples. We applied CNApp to a pan-cancer dataset of 10,635 genomes from TCGA showing that CNA patterns classify cancer types according to their tissue-of-origin, and that broad and focal CNA scores positively correlate in samples with low amounts of whole-chromosome and chromosomal arm-level imbalances. Moreover, using the hepatocellular carcinoma cohort from the TCGA repository, we demonstrate the reliability of the tool in identifying recurrent CNAs, confirming previous results. Finally, we establish machine learning-based models to predict colon cancer molecular subtypes and microsatellite instability based on broad CNA scores and specific genomic imbalances. In summary, CNApp facilitates data-driven research and provides a unique framework for the first time to comprehensively assess CNAs and perform integrative analyses that enable the identification of relevant clinical implications. CNApp is hosted at http://cnapp.bsc.es.


2020 ◽  
Author(s):  
Svetlana A. Yatsenko ◽  
Mahmoud Aarabi ◽  
Jie Hu ◽  
Urvashi Surti ◽  
Damara Ortiz ◽  
...  

2017 ◽  
Vol 384 ◽  
pp. 86-93 ◽  
Author(s):  
Chih-Chieh Yu ◽  
Wanglong Qiu ◽  
Caroline S. Juang ◽  
Mahesh M. Mansukhani ◽  
Balazs Halmos ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Sebastià Franch-Expósito ◽  
Laia Bassaganyas ◽  
Maria Vila-Casadesús ◽  
Eva Hernández-Illán ◽  
Roger Esteban-Fabró ◽  
...  

Somatic copy number alterations (CNAs) are a hallmark of cancer, but their role in tumorigenesis and clinical relevance remain largely unclear. Here, we developed CNApp, a web-based tool that allows a comprehensive exploration of CNAs by using purity-corrected segmented data from multiple genomic platforms. CNApp generates genome-wide profiles, computes CNA scores for broad, focal and global CNA burdens, and uses machine learning-based predictions to classify samples. We applied CNApp to the TCGA pan-cancer dataset of 10,635 genomes showing that CNAs classify cancer types according to their tissue-of-origin, and that each cancer type shows specific ranges of broad and focal CNA scores. Moreover, CNApp reproduces recurrent CNAs in hepatocellular carcinoma and predicts colon cancer molecular subtypes and microsatellite instability based on broad CNA scores and discrete genomic imbalances. In summary, CNApp facilitates CNA-driven research by providing a unique framework to identify relevant clinical implications. CNApp is hosted at https://tools.idibaps.org/CNApp/.


2012 ◽  
Vol 32 (1) ◽  
pp. 5-9 ◽  
Author(s):  
Bing-ji WEN ◽  
Wen-ming CONG ◽  
Ai-zhong WANG ◽  
Song-qin HE ◽  
Hong-mei JIANG ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii75-ii75
Author(s):  
Thais Sabedot ◽  
Michael Wells ◽  
Indrani Datta ◽  
Tathiane Malta ◽  
Ana Valeria Castro ◽  
...  

Abstract Adult diffuse gliomas are central nervous system (CNS) tumors that arise from the malignant transformation of glial cells. Nearly all gliomas will recur despite standard treatment however, current histopathological grading fails to predict which of them will relapse and/or progress. The Glioma Longitudinal AnalySiS (GLASS) consortium is a large-scale collaboration that aims to investigate the molecular profiling of matched primary and recurrent glioma samples from multiple institutions in order to better understand the dynamic evolution of these tumors. At this time, the cohort comprises 946 samples across 11 institutions and among those, 864 have DNA methylation data available. The current molecular classification based on 7 subtypes published by TCGA in 2016 was applied to the dataset. Among the IDH wildtype tumors, 33% (16/49) of the patients showed a change of subtype upon recurrence, whereas most of them (9/16) were Classic-like at the primary stage but changed to either Mesenchymal-like or PA-like at the recurrent level. Among the IDH mutant tumors, 15% (22/142) showed a change of subtype at recurrent stage, in which 16 out of 22 progressed from G-CIMP-high to G-CIMP-low. Although some tumors progressed to a different subtype upon recurrence, an unsupervised analysis showed that the samples tend to cluster by patient instead of by subtype. By estimating the copy number alterations of these tumors using DNA methylation, the overall copy number profile of the recurrent samples remains similar to their primary counterpart. From this initial analysis using epigenomic data, we were able to characterize some aspects of glioma evolution and how the DNA methylation is associated with the progression of these tumors to different subtypes. These findings corroborate the importance of epigenetics in gliomas and can potentially lead to the identification of new biomarkers that can reflect tumor burden and predict its development.


Medicina ◽  
2021 ◽  
Vol 57 (5) ◽  
pp. 502
Author(s):  
Georgiana Gug ◽  
Caius Solovan

Background and Objectives: Mycosis fungoides (MF) and large plaque parapsoriasis (LPP) evolution provide intriguing data and are the cause of numerous debates. The diagnosis of MF and LPP is associated with confusion and imprecise definition. Copy number alterations (CNAs) may play an essential role in the genesis of cancer out of genes expression dysregulation. Objectives: Due to the heterogeneity of MF and LPP and the scarcity of the cases, there are an exceedingly small number of studies that have identified molecular changes in these pathologies. We aim to identify and compare DNA copy number alterations and gene expression changes between MF and LPP to highlight the similarities and the differences between these pathologies. Materials and Methods: The patients were prospectively selected from University Clinic of Dermatology and Venereology Timișoara, Romania. From fresh frozen skin biopsies, we extracted DNA using single nucleotide polymorphism (SNP) data. The use of SNP array for copy number profiling is a promising approach for genome-wide analysis. Results: After reviewing each group, we observed that the histograms generated for chromosome 1–22 were remarkably similar and had a lot of CNAs in common, but also significant differences were seen. Conclusions: This study took a step forward in finding out the differences and similarities between MF and LPP, for a more specific and implicitly correct approach of the case. The similarity between these two pathologies in terms of CNAs is striking, emphasizing once again the difficulty of approaching and differentiating them.


Sign in / Sign up

Export Citation Format

Share Document