scholarly journals Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jenelle Wallace ◽  
Julia Lord ◽  
Lasse Dissing-Olesen ◽  
Beth Stevens ◽  
Venkatesh N Murthy

Microglia play key roles in regulating synapse development and refinement in the developing brain, but it is unknown whether they are similarly involved during adult neurogenesis. By transiently depleting microglia from the healthy adult mouse brain, we show that microglia are necessary for the normal functional development of adult-born granule cells (abGCs) in the olfactory bulb. Microglial depletion reduces the odor responses of developing, but not preexisting GCs in vivo in both awake and anesthetized mice. Microglia preferentially target their motile processes to interact with mushroom spines on abGCs, and when microglia are absent, abGCs develop smaller spines and receive weaker excitatory synaptic inputs. These results suggest that microglia promote the development of excitatory synapses onto developing abGCs, which may impact the function of these cells in the olfactory circuit.

2019 ◽  
Author(s):  
Jenelle Wallace ◽  
Julia Lord ◽  
Lasse Dissing-Olesen ◽  
Beth Stevens ◽  
Venkatesh Murthy

AbstractMicroglia play key roles in regulating synapse development and refinement in the developing brain, but it is unknown whether they are similarly involved during adult neurogenesis. By transiently ablating microglia from the healthy adult mouse brain, we show that microglia are necessary for the normal functional development of adult-born granule cells (abGCs) in the olfactory bulb. Microglia ablation reduces the odor responses of developing, but not preexisting GCs in vivo in both awake and anesthetized mice. Microglia preferentially target their motile processes to interact with mushroom spines on abGCs, and when microglia are absent, abGCs develop smaller spines and receive weaker excitatory synaptic inputs. These results suggest that microglia promote the development of excitatory synapses onto developing abGCs, which may impact the function of these cells in the olfactory circuit.


2011 ◽  
Vol 407 (4) ◽  
pp. 842-847 ◽  
Author(s):  
Ji-Soo Park ◽  
Wook-Young Baek ◽  
Yeo Hyang Kim ◽  
Jung-Eun Kim

2019 ◽  
Author(s):  
Jenelle Wallace ◽  
Julia Lord ◽  
Lasse Dissing-Olesen ◽  
Beth Stevens ◽  
Venkatesh N Murthy

2021 ◽  
Author(s):  
Zayna Chaker ◽  
Corina Segalada ◽  
Fiona Doetsch

Neural stem cells (NSCs) in the adult mouse brain contribute to lifelong brain plasticity. NSCs in the adult ventricular-subventricular zone (V-SVZ) are heterogeneous and, depending on their location in the niche, give rise to different subtypes of olfactory bulb interneurons. Here, we show that during pregnancy multiple regionally-distinct NSCs are dynamically recruited at different times. Coordinated temporal activation of these NSC pools generates sequential waves of short-lived olfactory bulb interneuron subtypes that mature in the mother around birth and in the perinatal care period. Concomitant with neuronal addition, oligodendrocyte progenitors also transiently increase in the olfactory bulb. Thus, life experiences, such as pregnancy, can trigger transient neurogenesis and gliogenesis under tight spatial and temporal control, and may provide a novel substrate for brain plasticity in anticipation of temporary physiological demand.


2002 ◽  
Vol 22 (5) ◽  
pp. 586-595 ◽  
Author(s):  
Karin Pierre ◽  
Pierre J. Magistretti ◽  
Luc Pellerin

Although previous Northern blot and in situ hybridization studies suggested that neurons express the monocarboxylate transporter MCT2, subsequent immunohistochemical analyzes either failed to confirm the presence of this transporter or revealed only a low density of immunolabeled neuronal processes in vivo. The authors report that appropriate section pretreatment (brief warming episode or proteinase K exposure) leads to extensive labeling of the neuropil, which appears as tiny puncta throughout the whole mouse brain. In addition, intense MCT2 immunoreactivity was found in cerebellar Purkinje cell bodies and their processes, on mossy fibers in the cerebellum, and on sensory fibers in the brainstem. Double immunofluorescent labeling with appropriate markers and observation with epifluorescence and confocal microscopy did not show extensive colocalization of MCT2 immunoreactivity with presynaptic or postsynaptic elements, but colocalization could be observed occasionally in the cortex with the postsynaptic density protein PSD95. Observations made at the electron microscopic level in the cortex corroborated these results and showed that MCT2 immunoreactivity was associated with wide membrane segments of neuronal processes. These data provide convincing evidence that MCT2 represents a major neuronal monocarboxylate transporter in the adult mouse brain, and further suggest that mature neurons could use monocarboxylates such as lactate as additional energy substrates.


2010 ◽  
Vol 18 (6) ◽  
pp. 1183-1191 ◽  
Author(s):  
Jochen De Vry ◽  
Pilar Martínez-Martínez ◽  
Mario Losen ◽  
Gerard H Bode ◽  
Yasin Temel ◽  
...  

FEBS Letters ◽  
2004 ◽  
Vol 569 (1-3) ◽  
pp. 293-300 ◽  
Author(s):  
Ruijin Shao ◽  
Fu-Ping Zhang ◽  
Fei Tian ◽  
P Anders Friberg ◽  
Xiaoyang Wang ◽  
...  

Author(s):  
Aleksandra Polosukhina ◽  
Pierre-Marie Lledo

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Neuroscience. Please check back later for the full article. In adult mammals, the olfactory bulb and the hippocampus are the regions in the brain that undergo continuous neurogenesis (production and recruitment of newborn neurons). While the other regions of the brain still retain a certain degree of plasticity after birth, they no longer can integrate new neurons. In rodents, thousands of adult-born neurons integrate into the bulb each day, and this process has been found to contribute not only to sensory function, but also to olfactory memory. This was a surprising finding, since historically the adult-brain has been viewed as a static organ. Understanding the process of regeneration of mature neurons in the brain has great potential for therapeutic applications. Consequently, this process of adult-neurogenesis has received widespread attention from clinicians and scientists. Neuroblasts bound for the olfactory bulb are produced in the subventricular zone of the lateral ventricle. Once they reach the olfactory bulb, they mostly develop into inhibitory interneurons called granule cells. Just after one month, about half of the adult-born neurons are eliminated, and the other half fully integrate and function in the olfactory bulb. These cells not only process information from the sensory neurons in the bulb, but also receive massive innervation from various regions of the brain, including the olfactory cortex, locus coeruleus, the horizontal limb of diagonal band of Broca, and the dorsal raphe nucleus. The sensory (bottom-up) and cortical (top-down) activity has been found to play a vital role in the adult-born granule cell survival. Though the exact purpose of these newborn neurons has not been identified, some emerging functions include maintenance of olfactory bulb circuitry, modulating sensory information, modulating olfactory learning, and memory.


Sign in / Sign up

Export Citation Format

Share Document