In vivo expression of Osterix in mature granule cells of adult mouse olfactory bulb

2011 ◽  
Vol 407 (4) ◽  
pp. 842-847 ◽  
Author(s):  
Ji-Soo Park ◽  
Wook-Young Baek ◽  
Yeo Hyang Kim ◽  
Jung-Eun Kim
eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jenelle Wallace ◽  
Julia Lord ◽  
Lasse Dissing-Olesen ◽  
Beth Stevens ◽  
Venkatesh N Murthy

Microglia play key roles in regulating synapse development and refinement in the developing brain, but it is unknown whether they are similarly involved during adult neurogenesis. By transiently depleting microglia from the healthy adult mouse brain, we show that microglia are necessary for the normal functional development of adult-born granule cells (abGCs) in the olfactory bulb. Microglial depletion reduces the odor responses of developing, but not preexisting GCs in vivo in both awake and anesthetized mice. Microglia preferentially target their motile processes to interact with mushroom spines on abGCs, and when microglia are absent, abGCs develop smaller spines and receive weaker excitatory synaptic inputs. These results suggest that microglia promote the development of excitatory synapses onto developing abGCs, which may impact the function of these cells in the olfactory circuit.


2019 ◽  
Author(s):  
Jenelle Wallace ◽  
Julia Lord ◽  
Lasse Dissing-Olesen ◽  
Beth Stevens ◽  
Venkatesh Murthy

AbstractMicroglia play key roles in regulating synapse development and refinement in the developing brain, but it is unknown whether they are similarly involved during adult neurogenesis. By transiently ablating microglia from the healthy adult mouse brain, we show that microglia are necessary for the normal functional development of adult-born granule cells (abGCs) in the olfactory bulb. Microglia ablation reduces the odor responses of developing, but not preexisting GCs in vivo in both awake and anesthetized mice. Microglia preferentially target their motile processes to interact with mushroom spines on abGCs, and when microglia are absent, abGCs develop smaller spines and receive weaker excitatory synaptic inputs. These results suggest that microglia promote the development of excitatory synapses onto developing abGCs, which may impact the function of these cells in the olfactory circuit.


2001 ◽  
Vol 86 (6) ◽  
pp. 2823-2833 ◽  
Author(s):  
Zoltan Nusser ◽  
Leslie M. Kay ◽  
Gilles Laurent ◽  
Gregg E. Homanics ◽  
Istvan Mody

Synchronized neural activity is believed to be essential for many CNS functions, including neuronal development, sensory perception, and memory formation. In several brain areas GABAA receptor–mediated synaptic inhibition is thought to be important for the generation of synchronous network activity. We have used GABAA receptor β3 subunit deficient mice (β3−/−) to study the role of GABAergic inhibition in the generation of network oscillations in the olfactory bulb (OB) and to reveal the role of such oscillations in olfaction. The expression of functional GABAA receptors was drastically reduced (>93%) in β3−/− granule cells, the local inhibitory interneurons of the OB. This was revealed by a large reduction of muscimol-evoked whole-cell current and the total current mediated by spontaneous, miniature inhibitory postsynaptic currents (mIPSCs). In β3−/− mitral/tufted cells (principal cells), there was a two-fold increase in mIPSC amplitudes without any significant change in their kinetics or frequency. In parallel with the altered inhibition, there was a significant increase in the amplitude of theta (80% increase) and gamma (178% increase) frequency oscillations in β3−/− OBs recorded in vivo from freely moving mice. In odor discrimination tests, we found β3−/− mice to be initially the same as, but better with experience than β3+/+ mice in distinguishing closely related monomolecular alcohols. However, β3−/− mice were initially better and then worse with practice than control mice in distinguishing closely related mixtures of alcohols. Our results indicate that the disruption of GABAAreceptor–mediated synaptic inhibition of GABAergic interneurons and the augmentation of IPSCs in principal cells result in increased network oscillations in the OB with complex effects on olfactory discrimination, which can be explained by an increase in the size or effective power of oscillating neural cell assemblies among the mitral cells of β3−/− mice.


2009 ◽  
Vol 65 ◽  
pp. S165
Author(s):  
Sayaka Komano ◽  
Takeshi Yokoyama ◽  
Kensaku Mori ◽  
Masahiro Yamaguchi

2016 ◽  
Author(s):  
Martin Wienisch ◽  
Venkatesh N. Murthy

AbstractInformation processing in early sensory regions is modulated by a diverse range of inhibitory interneurons. We sought to elucidate the role of olfactory bulb interneurons called granule cells (GCs) in odor processing by imaging the activity of hundreds of these cells simultaneously in mice. Odor responses in GCs were temporally diverse and spatially disperse, with some degree of non-random, modular organization. The overall sparseness of activation of GCs was highly correlated with the extent of glomerular activation by odor stimuli. Increasing concentrations of single odorants led to proportionately larger population activity, but some individual GCs had non-monotonic relation to concentration due to local inhibitory interactions. Individual dendritic segments could sometimes respond independently to odors, revealing their capacity for compartmentalized signaling in vivo. Collectively, the response properties of GCs point to their role in specific and local processing, rather than global operations such as response normalization proposed for other interneurons.


2006 ◽  
Vol 95 (3) ◽  
pp. 1881-1887 ◽  
Author(s):  
Dejan Vučinić ◽  
Lawrence B. Cohen ◽  
Efstratios K. Kosmidis

Mouse olfactory receptor proteins have relatively broad odorant tuning profiles, so single odorants typically activate a substantial subset of glomeruli in the main olfactory bulb, resulting in stereotyped odorant- and concentration-dependent glomerular input maps. One of the functions of the olfactory bulb may be to reduce the extent of this rather widespread activation before transmitting the information to higher olfactory centers. Two circuits have been studied in vitro that could perform center-surround inhibition in the olfactory bulb, one circuit acting between glomeruli, the other through the classical reciprocal synapses between the lateral dendrites of mitral cells and the dendrites of granule cells. One unanswered question from these in vitro measurements was how these circuits would affect the response to odorants in vivo. We made measurements of the odorant-evoked increase in calcium concentration in the olfactory receptor neuron terminals in the anesthetized mouse to evaluate the role of presynaptic inhibition in reshaping the input to the olfactory bulb. We compared the glomerular responses in 2- to 4-wk-old mice before and after suppressing presynaptic inhibition onto the receptor neuron terminals with the GABAB antagonist, CGP46381 . We find that the input maps are modified by an apparent center-surround inhibition: strongly activated glomeruli appear to suppress the release from receptor neurons terminating in surrounding glomeruli. This form of lateral inhibition has the effect of increasing the contrast of the sensory input map.


2018 ◽  
Author(s):  
Daniel Kepple ◽  
Brittany N. Cazakoff ◽  
Heike S. Demmer ◽  
Dennis Eckmeier ◽  
Stephen D. Shea ◽  
...  

ABSTRACTA major challenge for many sensory systems is the representation of stimuli that vary along many dimensions. This problem is particularly acute for chemosensory systems because they require sensitivity to a large number of molecular features. Here we use a combination of computational modeling and in vivo electrophysiological data to propose a solution for this problem in the circuitry of the mammalian main olfactory bulb. We model the input to the olfactory bulb as an array of chemical features that, due to the vast size of chemical feature space, is sparsely occupied. We propose that this sparseness enables compression of the chemical feature array by broadly-tuned odorant receptors. Reconstruction of stimuli is then achieved by a supernumerary network of inhibitory granule cells. The main olfactory bulb may therefore implement a compressed sensing algorithm that presents several advantages. First, we demonstrate that a model of synaptic interactions between the granule cells and the mitral cells that constitute the output of the olfactory bulb, can store a highly efficient representation of odors by competitively selecting a sparse basis set of “expert” granule cells. Second, we further show that this model network can simultaneously learn separable representations of each component of an odor mixture without exposure to those components in isolation. Third, our model is capable of independent and odor-specific adaptation, which could be used by the olfactory system to perform background subtraction or sensitively compare a sample odor with an internal expectation. This model makes specific predictions about the dynamics of granule cell activity during learning. Using in vivo electrophysiological recordings, we corroborate these predictions in an experimental paradigm that stimulates memorization of odorants.


Sign in / Sign up

Export Citation Format

Share Document