scholarly journals Author response: Intracellular calcium leak lowers glucose storage in human muscle, promoting hyperglycemia and diabetes

2020 ◽  
Author(s):  
Eshwar R Tammineni ◽  
Natalia Kraeva ◽  
Lourdes Figueroa ◽  
Carlo Manno ◽  
Carlos A Ibarra ◽  
...  
1993 ◽  
Vol 265 (6) ◽  
pp. E898-E905 ◽  
Author(s):  
L. J. Mandarino ◽  
A. Consoli ◽  
A. Jain ◽  
D. E. Kelley

Insulin and glucose stimulate glucose uptake in human muscle by different mechanisms. Insulin has well-known effects on glucose transport, glycogen synthesis, and glucose oxidation, but the effects of hyperglycemia on the intracellular routing of glucose are less well characterized. We used euglycemic and hyperglycemic clamps with leg balance measurements to determine how hyperglycemia affects skeletal muscle glucose storage, glycolysis, and glucose oxidation in normal human subjects. Glycogen synthase (GS) and pyruvate dehydrogenase complex (PDHC) activities were determined using muscle biopsies. During basal insulin replacement, hyperglycemia (11.6 +/- 0.31 mM) increased leg muscle glucose uptake (0.522 +/- 0.129 vs. 0.261 +/- 0.071 mumol.min-1 x 100 ml leg tissue-1, P < 0.05), storage (0.159 +/- 0.082 vs. -0.061 +/- 0.055, P < 0.05), and oxidation (0.409 +/- 0.080 vs. 0.243 +/- 0.085, P < 0.05) compared with euglycemia (6.63 +/- 0.33 mM). The increase in basal glucose oxidation due to hyperglycemia was associated with increased muscle PDHC activity (0.499 +/- 0.087 vs. 0.276 +/- 0.049, P < 0.05). However, the increase in leg glucose storage was not accompanied by an increase in muscle GS activity. During hyperinsulinemia, hyperglycemia (11.9 +/- 0.49 mM) also caused an additional increase in leg glucose uptake over euglycemia (6.14 +/- 0.42 mM) alone (5.75 +/- 1.25 vs. 3.75 +/- 0.58 mumol.min-1 x 100 ml leg-1, P < 0.05). In this case the major intracellular effect of hyperglycemia was to increase glucose storage (5.03 +/- 1.16 vs. 2.39 +/- 0.37, P < 0.05). At hyperinsulinemia, hyperglycemia had no effect on muscle GS or PDHC activity.(ABSTRACT TRUNCATED AT 250 WORDS)


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Eshwar R Tammineni ◽  
Natalia Kraeva ◽  
Lourdes Figueroa ◽  
Carlo Manno ◽  
Carlos A Ibarra ◽  
...  

Most glucose is processed in muscle, for energy or glycogen stores. Malignant Hyperthermia Susceptibility (MHS) exemplifies muscle conditions that increase [Ca2+]cytosol. 42% of MHS patients have hyperglycemia. We show that phosphorylated glycogen phosphorylase (GPa), glycogen synthase (GSa) – respectively activated and inactivated by phosphorylation – and their Ca2+-dependent kinase (PhK), are elevated in microsomal extracts from MHS patients’ muscle. Glycogen and glucose transporter GLUT4 are decreased. [Ca2+]cytosol, increased to MHS levels, promoted GP phosphorylation. Imaging at ~100 nm resolution located GPa at sarcoplasmic reticulum (SR) junctional cisternae, and apo-GP at Z disk. MHS muscle therefore has a wide-ranging alteration in glucose metabolism: high [Ca2+]cytosol activates PhK, which inhibits GS, activates GP and moves it toward the SR, favoring glycogenolysis. The alterations probably cause these patients’ hyperglycemia. For basic studies, MHS emerges as a variable stressor, which forces glucose pathways from the normal to the diseased range, thereby exposing novel metabolic links.


2020 ◽  
Author(s):  
Gesa F. Dinges ◽  
Alexander S. Chockley ◽  
Till Bockemühl ◽  
Kei Ito ◽  
Alexander Blanke ◽  
...  

2020 ◽  
Author(s):  
Charles A. Williams ◽  
Kimberly E. Miller ◽  
Nisa P. Williams ◽  
Christine V. Portfors ◽  
David J. Perkel

Sign in / Sign up

Export Citation Format

Share Document