scholarly journals Neuropeptide VF neurons promote sleep via the serotonergic raphe

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Daniel A Lee ◽  
Grigorios Oikonomou ◽  
Tasha Cammidge ◽  
Andrey Andreev ◽  
Young Hong ◽  
...  

Although several sleep-regulating neuronal populations have been identified, little is known about how they interact with each other to control sleep/wake states. We previously identified neuropeptide VF (NPVF) and the hypothalamic neurons that produce it as a sleep-promoting system (Lee et al., 2017). Here we show using zebrafish that npvf-expressing neurons control sleep via the serotonergic raphe nuclei (RN), a hindbrain structure that is critical for sleep in both diurnal zebrafish and nocturnal mice. Using genetic labeling and calcium imaging, we show that npvf-expressing neurons innervate and can activate serotonergic RN neurons. We also demonstrate that chemogenetic or optogenetic stimulation of npvf-expressing neurons induces sleep in a manner that requires NPVF and serotonin in the RN. Finally, we provide genetic evidence that NPVF acts upstream of serotonin in the RN to maintain normal sleep levels. These findings reveal a novel hypothalamic-hindbrain neuronal circuit for sleep/wake control.

2019 ◽  
Author(s):  
Daniel A. Lee ◽  
Grigorios Oikonomou ◽  
Tasha Cammidge ◽  
Young Hong ◽  
David A. Prober

ABSTRACTAlthough several sleep-regulating neurons have been identified, little is known about how they interact with each other for sleep/wake control. We previously identified neuropeptide VF (NPVF) and the hypothalamic neurons that produce it as a sleep-promoting system (Lee et al., 2017). Here we use zebrafish to describe a neural circuit in which neuropeptide VF (npvf)-expressing neurons control sleep via the serotonergic raphe nuclei (RN), a hindbrain structure that promotes sleep in both diurnal zebrafish and nocturnal mice. Using genetic labeling and calcium imaging, we show that npvf-expressing neurons innervate and activate serotonergic RN neurons. We additionally demonstrate that optogenetic stimulation of npvf-expressing neurons induces sleep in a manner that requires NPVF and is abolished when the RN are ablated or lack serotonin. Finally, genetic epistasis demonstrates that NPVF acts upstream of serotonin in the RN to maintain normal sleep levels. These findings reveal a novel hypothalamic-hindbrain circuit for sleep/wake control.


2019 ◽  
Author(s):  
Paride Antinucci ◽  
Mónica Folgueira ◽  
Isaac H. Bianco

AbstractFor many species, hunting is an innate behaviour that is crucial for survival, yet the circuits that control predatory action sequences are poorly understood. We used larval zebrafish to identify a command system that controls hunting. By combining calcium imaging with a virtual hunting assay, we identified a discrete pretectal region that is selectively active when animals initiate hunting. Targeted genetic labelling allowed us to examine the function and morphology of individual cells and identify two classes of pretectal neuron that project to ipsilateral optic tectum or the contralateral tegmentum. Optogenetic stimulation of single neurons of either class was able to induce sustained hunting sequences, in the absence of prey. Furthermore, laser ablation of these neurons impaired prey-catching and prevented induction of hunting by optogenetic stimulation of the anterior-ventral tectum. In sum, we define a specific population of pretectal neurons that functions as a command system to drive predatory behaviour.Key findingsPretectal neurons are recruited during hunting initiationOptogenetic stimulation of single pretectal neurons can induce predatory behaviourAblation of pretectal neurons impairs huntingPretectal cells comprise a command system controlling hunting behaviour


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Paride Antinucci ◽  
Mónica Folgueira ◽  
Isaac H Bianco

For many species, hunting is an innate behaviour that is crucial for survival, yet the circuits that control predatory action sequences are poorly understood. We used larval zebrafish to identify a population of pretectal neurons that control hunting. By combining calcium imaging with a virtual hunting assay, we identified a discrete pretectal region that is selectively active when animals initiate hunting. Targeted genetic labelling allowed us to examine the function and morphology of individual cells and identify two classes of pretectal neuron that project to ipsilateral optic tectum or the contralateral tegmentum. Optogenetic stimulation of single neurons of either class was able to induce sustained hunting sequences, in the absence of prey. Furthermore, laser ablation of these neurons impaired prey-catching and prevented induction of hunting by optogenetic stimulation of the anterior-ventral tectum. We propose that this specific population of pretectal neurons functions as a command system to induce predatory behaviour.


2016 ◽  
Author(s):  
Ruey-Kuang Cheng ◽  
Seetha Krishnan ◽  
Qian Lin ◽  
Caroline Kibat ◽  
Suresh Jesuthasan

AbstractBackgroundNeural activity in the vertebrate habenula is affected by changes in ambient illumination. The nucleus that links photoreceptors with the habenula is not well characterized. Here, we describe the location, inputs and potential function of this nucleus in larval zebrafish.ResultsHigh-speed calcium imaging shows that onset and offset of light evokes a rapid response in the dorsal left neuropil of the habenula, indicating preferential targeting of this neuropil by afferents mediating response to change in irradiance. Injection of a lipophilic dye into this neuropil led to bilateral labeling of a nucleus in the anterior thalamus that responds to onset and offset of light, and that receives innervation from the retina and pineal organ. Lesioning the neuropil of this thalamic nucleus reduced the habenula response to light. Optogenetic stimulation of the thalamus with channelrhodopsin-2 caused depolarization in the habenula, while manipulation with anion channelrhodopsins inhibited habenula response to light and disrupted climbing and diving that is evoked by irradiance change.ConclusionsA nucleus in the anterior thalamus of larval zebrafish innervates the dorsal left habenula. This nucleus receives input from the retina and pineal, responds to increase and decrease in irradiance, enables habenula responses to change in irradiance, and may function in light-evoked vertical migration.


2019 ◽  
Author(s):  
S Ceto ◽  
KJ Sekiguchi ◽  
Y Takashima ◽  
A Nimmerjahn ◽  
MH Tuszynski

SummaryNeural stem/progenitor cell grafts integrate into sites of spinal cord injury (SCI) and form anatomical and electrophysiological neuronal relays across lesions. To determine how grafts become synaptically organized and connect with host systems, we performed calcium imaging of neural progenitor cell grafts within sites of SCI, using both in vivo imaging and spinal cord slices. Stem cell grafts organize into localized synaptic networks that are spontaneously active. Following optogenetic stimulation of host corticospinal tract axons regenerating into grafts, distinct and segregated neuronal networks respond throughout the graft. Moreover, optogenetic stimulation of graft axons extending out from the lesion into the denervated spinal cord also trigger responses in local host neuronal networks. In vivo imaging reveals that behavioral stimulation of host elicits focal synaptic responses within grafts. Thus, remarkably, neural progenitor cell grafts form functional synaptic subnetworks in patterns paralleling the normal spinal cord.


Author(s):  
Archana Venkataraman ◽  
Sarah C. Hunter ◽  
Maria Dhinojwala ◽  
Diana Ghebrezadik ◽  
JiDong Guo ◽  
...  

AbstractFear generalization and deficits in extinction learning are debilitating dimensions of Post-Traumatic Stress Disorder (PTSD). Most understanding of the neurobiology underlying these dimensions comes from studies of cortical and limbic brain regions. While thalamic and subthalamic regions have been implicated in modulating fear, the potential for incerto-thalamic pathways to suppress fear generalization and rescue deficits in extinction recall remains unexplored. We first used patch-clamp electrophysiology to examine functional connections between the subthalamic zona incerta and thalamic reuniens (RE). Optogenetic stimulation of GABAergic ZI → RE cell terminals in vitro induced inhibitory post-synaptic currents (IPSCs) in the RE. We then combined high-intensity discriminative auditory fear conditioning with cell-type-specific and projection-specific optogenetics in mice to assess functional roles of GABAergic ZI → RE cell projections in modulating fear generalization and extinction recall. In addition, we used a similar approach to test the possibility of fear generalization and extinction recall being modulated by a smaller subset of GABAergic ZI → RE cells, the A13 dopaminergic cell population. Optogenetic stimulation of GABAergic ZI → RE cell terminals attenuated fear generalization and enhanced extinction recall. In contrast, optogenetic stimulation of dopaminergic ZI → RE cell terminals had no effect on fear generalization but enhanced extinction recall in a dopamine receptor D1-dependent manner. Our findings shed new light on the neuroanatomy and neurochemistry of ZI-located cells that contribute to adaptive fear by increasing the precision and extinction of learned associations. In so doing, these data reveal novel neuroanatomical substrates that could be therapeutically targeted for treatment of PTSD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoko Kato ◽  
Harumi Katsumata ◽  
Ayumu Inutsuka ◽  
Akihiro Yamanaka ◽  
Tatsushi Onaka ◽  
...  

AbstractMultiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.


Sign in / Sign up

Export Citation Format

Share Document