scholarly journals Sorting nexin-27 regulates AMPA receptor trafficking through the synaptic adhesion protein LRFN2

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kirsty J McMillan ◽  
Paul J Banks ◽  
Francesca L N Hellel ◽  
Ruth E Carmichael ◽  
Thomas Clairfeuille ◽  
...  

The endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA receptors. To provide a broader view of SNX27-associated pathologies we performed proteomics in rat primary neurons to identify SNX27-dependent cargoes, and identified proteins linked to excitotoxicity, epilepsy, intellectual disabilities and working memory deficits. Focusing on the synaptic adhesion molecule LRFN2, we established that SNX27 binds to LRFN2 and regulates its endosomal sorting. Furthermore, LRFN2 associates with AMPA receptors and knockdown of LRFN2 results in decreased surface AMPA receptor expression, reduced synaptic activity, and attenuated hippocampal long-term potentiation. Overall, our study provides an additional mechanism by which SNX27 can control AMPA receptor-mediated synaptic transmission and plasticity indirectly through the sorting of LRFN2 and offers molecular insight into the perturbed function of SNX27 and LRFN2 in a range of neurological conditions.

2020 ◽  
Author(s):  
Kirsty J. McMillan ◽  
Paul J. Banks ◽  
Francesca L. N. Hellel ◽  
Ruth E. Carmichael ◽  
Thomas Clairfeuille ◽  
...  

AbstractThe endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA receptors. To provide a broader view of SNX27-associated pathologies we have performed unbiased proteomics to identify new neuronal SNX27-dependent cargoes, and identified proteins linked to excitotoxicity (SLC1A3, SLC4A7, SLC6A11), epilepsy, intellectual disabilities and working memory deficits (KCNT2, ADAM22, KIDINS220, LRFN2). Focusing on the synaptic adhesion molecule leucine-rich repeat and fibronectin type-III domain-containing protein 2 (LRFN2), we establish that SNX27 binds to LRFN2 and is responsible for regulating its endosomal sorting. LRFN2 associates with AMPA receptors and knockdown of LRFN2 phenocopies SNX27 depletion in decreasing surface expression of AMPA receptors, reducing synaptic activity and attenuating hippocampal long-term potentiation. Our evidence suggests that, in contrast to previous reports, SNX27 does not directly bind to AMPA receptors, and instead controls AMPA receptor-mediated synaptic transmission and plasticity indirectly through the endosomal sorting of LRFN2. Overall, our study provides new molecular insight into the perturbed function of SNX27 and LRFN2 in a range of neurological conditions.


Proteomes ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 40 ◽  
Author(s):  
Joongkyu Park

Synaptic plasticity has been considered a key mechanism underlying many brain functions including learning, memory, and drug addiction. An increase or decrease in synaptic activity of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) complex mediates the phenomena as shown in the cellular models of synaptic plasticity, long-term potentiation (LTP), and depression (LTD). In particular, protein phosphorylation shares the spotlight in expressing the synaptic plasticity. This review summarizes the studies on phosphorylation of the AMPAR pore-forming subunits and auxiliary proteins including transmembrane AMPA receptor regulatory proteins (TARPs) and discusses its role in synaptic plasticity.


2003 ◽  
Vol 358 (1432) ◽  
pp. 715-720 ◽  
Author(s):  
Fabrice Duprat ◽  
Michael Daw ◽  
Wonil Lim ◽  
Graham Collingridge ◽  
John Isaac

AMPA-type glutamate receptors mediate most fast excitatory synaptic transmissions in the mammalian brain. They are critically involved in the expression of long-term potentiation and long-term depression, forms of synaptic plasticity that are thought to underlie learning and memory. A number of synaptic proteins have been identified that interact with the intracellular C-termini of AMPA receptor subunits. Here, we review recent studies and present new experimental data on the roles of these interacting proteins in regulating the AMPA receptor function during basal synaptic transmission and plasticity.


2019 ◽  
Vol 116 (12) ◽  
pp. 5727-5736 ◽  
Author(s):  
Mariline M. Silva ◽  
Beatriz Rodrigues ◽  
Joana Fernandes ◽  
Sandra D. Santos ◽  
Laura Carreto ◽  
...  

Homeostatic synaptic scaling is a negative feedback response to fluctuations in synaptic strength induced by developmental or learning-related processes, which maintains neuronal activity stable. Although several components of the synaptic scaling apparatus have been characterized, the intrinsic regulatory mechanisms promoting scaling remain largely unknown. MicroRNAs may contribute to posttranscriptional control of mRNAs implicated in different stages of synaptic scaling, but their role in these mechanisms is still undervalued. Here, we report that chronic blockade of glutamate receptors of the AMPA and NMDA types in hippocampal neurons in culture induces changes in the neuronal mRNA and miRNA transcriptomes, leading to synaptic upscaling. Specifically, we show that synaptic activity blockade persistently down-regulates miR-186-5p. Moreover, we describe a conserved miR-186-5p-binding site within the 3′UTR of the mRNA encoding the AMPA receptor GluA2 subunit, and demonstrate that GluA2 is a direct target of miR-186-5p. Overexpression of miR-186 decreased GluA2 surface levels, increased synaptic expression of GluA2-lacking AMPA receptors, and blocked synaptic scaling, whereas inhibition of miR-186-5p increased GluA2 surface levels and the amplitude and frequency of AMPA receptor-mediated currents, and mimicked excitatory synaptic scaling induced by synaptic inactivity. Our findings elucidate an activity-dependent miRNA-mediated mechanism for regulation of AMPA receptor expression.


Science ◽  
2018 ◽  
Vol 363 (6422) ◽  
pp. eaav1483 ◽  
Author(s):  
Ankit Awasthi ◽  
Binu Ramachandran ◽  
Saheeb Ahmed ◽  
Eva Benito ◽  
Yo Shinoda ◽  
...  

Forgetting is important. Without it, the relative importance of acquired memories in a changing environment is lost. We discovered that synaptotagmin-3 (Syt3) localizes to postsynaptic endocytic zones and removes AMPA receptors from synaptic plasma membranes in response to stimulation. AMPA receptor internalization, long-term depression (LTD), and decay of long-term potentiation (LTP) of synaptic strength required calcium-sensing by Syt3 and were abolished through Syt3 knockout. In spatial memory tasks, mice in which Syt3 was knocked out learned normally but exhibited a lack of forgetting. Disrupting Syt3:GluA2 binding in a wild-type background mimicked the lack of LTP decay and lack of forgetting, and these effects were occluded in the Syt3 knockout background. Our findings provide evidence for a molecular mechanism in which Syt3 internalizes AMPA receptors to depress synaptic strength and promote forgetting.


2016 ◽  
Vol 113 (8) ◽  
pp. 2264-2269 ◽  
Author(s):  
Bruce E. Herring ◽  
Roger A. Nicoll

The molecular mechanism underlying long-term potentiation (LTP) is critical for understanding learning and memory. CaMKII, a key kinase involved in LTP, is both necessary and sufficient for LTP induction. However, how CaMKII gives rise to LTP is currently unknown. Recent studies suggest that Rho GTPases are necessary for LTP. Rho GTPases are activated by Rho guanine exchange factors (RhoGEFs), but the RhoGEF(s) required for LTP also remain unknown. Here, using a combination of molecular, electrophysiological, and imaging techniques, we show that the RhoGEF Kalirin and its paralog Trio play critical and redundant roles in excitatory synapse structure and function. Furthermore, we show that CaMKII phosphorylation of Kalirin is sufficient to enhance synaptic AMPA receptor expression, and that preventing CaMKII signaling through Kalirin and Trio prevents LTP induction. Thus, our data identify Kalirin and Trio as the elusive targets of CaMKII phosphorylation responsible for AMPA receptor up-regulation during LTP.


1993 ◽  
Vol 70 (5) ◽  
pp. 2045-2055 ◽  
Author(s):  
V. Crepel ◽  
C. Hammond ◽  
P. Chinestra ◽  
D. Diabira ◽  
Y. Ben-Ari

1. The possibility of long-lasting modifications of glutamatergic responses after anoxic-aglycemic (AA) episodes was investigated in CA1 hippocampal neurons of adult slices. Bicuculline (10 microM) was continuously bath applied to block GABAA receptor-mediated currents. AA episodes were induced by brief (1.30-3 min) perfusions with a glucose free artificial-cerebro-spinal-fluid (ACSF) saturated with 95% N2-5% CO2. 2. In presence of (0.6 mM) Mg2+ and a low concentration of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 1 microM), the Schaffer collateral field EPSPs consisted of an early AMPA receptor-mediated component and a late N-methyl-D-aspartate (NMDA) receptor-mediated component. The former was blocked by (10 microM) CNQX and the latter by (50) microM D-2-amino-5-phosphonovalerate (D-APV). The AA episode induced a selective long-term potentiation (LTP) of the NMDA receptor-mediated component [+70 +/- 13% (mean +/- SE), P < or = 0.008, n = 9] without affecting significantly the AMPA receptor-mediated component (+2 +/- 4, P < or = 0.86 n = 9). This selective LTP is due to an enhanced efficacy of synaptic transmission and will be referred to as anoxic LTP. 3. In slices perfused with an ACSF containing a physiological concentration of (1.3 mM) Mg2+ and no CNQX, the intracellularly recorded excitatory postsynaptic potential (EPSP) was mixed (AMPA/NMDA) at -65 mV and exclusively mediated by AMPA receptors at -100 mV. At -65 mV, the AA episode induced a persistent potentiation of the EPSP (peak amplitude potentiated by 43 +/- 6%, P < or = 0.008, n = 9, 1 h after return to control ACSF). This potentiated component of the EPSP was fully sensitive to (50 microM) D-APV. The CNQX-sensitive AMPA receptor-mediated component was not affected by the AA episode (-5.7 +/- 6%, P < or = 0.123, n = 9). Furthermore, at -100 mV a large APV-sensitive component appeared after the AA episode (+58 +/- 18% of the peak amplitude, P < or = 0.018, n = 9). Therefore, the AA episode induced a selective LTP of the NMDA receptor-mediated component of the EPSP. 4. A robust LTP (+50.0 +/- 7.5%, P < or = 0.008, n = 12) of the NMDA receptor-mediated intracellular EPSP was also observed when AMPA receptors were fully and continuously blocked by (15 microM) CNQX.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 14 (670) ◽  
pp. eabb1953
Author(s):  
Luís F. Ribeiro ◽  
Tatiana Catarino ◽  
Mário Carvalho ◽  
Luísa Cortes ◽  
Sandra D. Santos ◽  
...  

The biological signals of hunger, satiety, and memory are interconnected. The role of the hormone ghrelin in regulating feeding and memory makes ghrelin receptors attractive targets for associated disorders. We investigated the effects of the high ligand-independent activity of the ghrelin receptor GHS-R1a on the physiology of excitatory synapses in the hippocampus. Blocking this activity produced a decrease in the synaptic content of AMPA receptors in hippocampal neurons and a reduction in GluA1 phosphorylation at Ser845. Reducing the ligand-independent activity of GHS-R1a increased the surface diffusion of AMPA receptors and impaired AMPA receptor–dependent synaptic delivery induced by chemical long-term potentiation. Accordingly, we found that blocking this GHS-R1a activity impaired spatial and recognition memory in mice. These observations support a role for the ligand-independent activity of GHS-R1a in regulating AMPA receptor trafficking under basal conditions and in the context of synaptic plasticity that underlies learning.


Sign in / Sign up

Export Citation Format

Share Document