scholarly journals S-acylation by ZDHHC20 targets ORAI1 channels to lipid rafts for efficient Ca2+ signaling by Jurkat T cell receptors at the immune synapse

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Amado Carreras-Sureda ◽  
Laurence Abrami ◽  
Kim Ji-Hee ◽  
Wen-An Wang ◽  
Christopher Henry ◽  
...  

Efficient immune responses require Ca2+ fluxes across ORAI1 channels during engagement of T cell receptors (TCR) at the immune synapse (IS) between T cells and antigen presenting cells. Here, we show that ZDHHC20-mediated S-acylation of the ORAI1 channel at residue Cys143 promotes TCR recruitment and signaling at the IS. Cys143 mutations reduced ORAI1 currents and store-operated Ca2+ entry in HEK-293 cells and nearly abrogated long-lasting Ca2+ elevations, NFATC1 translocation, and IL-2 secretion evoked by TCR engagement in Jurkat T cells. The acylation-deficient channel remained in cholesterol-poor domains upon enforced ZDHHC20 expression and was recruited less efficiently to the IS along with actin and TCR. Our results establish S-acylation as a critical regulator of ORAI1 channel trafficking and function at the IS and reveal that ORAI1 S-acylation enhances TCR recruitment to the synapse.

2021 ◽  
Author(s):  
Amado Carreras-Sureda ◽  
Laurence Abrami ◽  
Ji-Hee Kim ◽  
Maud Frieden ◽  
Monica Didier ◽  
...  

AbstractEfficient immune responses require Ca2+ fluxes across ORAI1 channels during engagement of T cell receptors (TCR) at the immune synapse (IS) between T cells and antigen presenting cells. Here, we show that ZDHHC20-mediated S-acylation of the ORAI1 channel at residue Cys143 is required for TCR assembly and signaling at the IS. Cys143 mutations reduced ORAI1 currents and store-operated Ca2+ entry in HEK-293 cells and nearly abrogated long-lasting Ca2+ elevations, NFATC1 translocation, and IL-2 secretion evoked by TCR engagement in Jurkat T cells. The acylation-deficient channel had reduced mobility in lipids, accumulated in cholesterol-poor domains, formed tiny clusters, failed to reach the IS and unexpectedly also prevented TCR recruitment to the IS. Our results establish S-acylation as a critical regulator of ORAI1 channel assembly and function at the IS and reveal that local Ca2+ fluxes are required for TCR recruitment to the synapse.


2016 ◽  
Vol 113 (40) ◽  
pp. E5916-E5924 ◽  
Author(s):  
Yunmin Jung ◽  
Inbal Riven ◽  
Sara W. Feigelson ◽  
Elena Kartvelishvily ◽  
Kazuo Tohya ◽  
...  

Leukocyte microvilli are flexible projections enriched with adhesion molecules. The role of these cellular projections in the ability of T cells to probe antigen-presenting cells has been elusive. In this study, we probe the spatial relation of microvilli and T-cell receptors (TCRs), the major molecules responsible for antigen recognition on the T-cell membrane. To this end, an effective and robust methodology for mapping membrane protein distribution in relation to the 3D surface structure of cells is introduced, based on two complementary superresolution microscopies. Strikingly, TCRs are found to be highly localized on microvilli, in both peripheral blood human T cells and differentiated effector T cells, and are barely found on the cell body. This is a decisive demonstration that different types of T cells universally localize their TCRs to microvilli, immediately pointing to these surface projections as effective sensors for antigenic moieties. This finding also suggests how previously reported membrane clusters might form, with microvilli serving as anchors for specific T-cell surface molecules.


2011 ◽  
Vol 208 (9) ◽  
pp. 1741-1747 ◽  
Author(s):  
Anne G. Kasmar ◽  
Ildiko van Rhijn ◽  
Tan-Yun Cheng ◽  
Marie Turner ◽  
Chetan Seshadri ◽  
...  

Microbial lipids activate T cells by binding directly to CD1 and T cell receptors (TCRs) or by indirect effects on antigen-presenting cells involving induction of lipid autoantigens, CD1 transcription, or cytokine release. To distinguish among direct and indirect mechanisms, we developed fluorescent human CD1b tetramers and measured T cell staining. CD1b tetramer staining of T cells requires glucose monomycolate (GMM) antigens, is specific for TCR structure, and is blocked by a recombinant clonotypic TCR comprised of TRAV17 and TRBV4-1, proving that CD1b–glycolipid complexes bind the TCR. GMM-loaded tetramers brightly stain a small subpopulation of blood-derived cells from humans infected with Mycobacterium tuberculosis, providing direct detection of a CD1b-reactive T cell repertoire. Polyclonal T cells from patients sorted with tetramers are activated by GMM antigens presented by CD1b. Whereas prior studies emphasized CD8+ and CD4−CD8− CD1b-restricted clones, CD1b tetramer-based studies show that nearly all cells express the CD4 co-receptor. These findings prove a cognate mechanism whereby CD1b–glycolipid complexes bind to TCRs. CD1b tetramers detect a natural CD1b-restricted T cell repertoire ex vivo with unexpected features, opening a new investigative path to study the human CD1 system.


Science ◽  
2019 ◽  
Vol 366 (6472) ◽  
pp. 1522-1527 ◽  
Author(s):  
Jérôme Le Nours ◽  
Nicholas A. Gherardin ◽  
Sri H. Ramarathinam ◽  
Wael Awad ◽  
Florian Wiede ◽  
...  

T cell receptors (TCRs) recognize antigens presented by major histocompatibility complex (MHC) and MHC class I–like molecules. We describe a diverse population of human γδ T cells isolated from peripheral blood and tissues that exhibit autoreactivity to the monomorphic MHC-related protein 1 (MR1). The crystal structure of a γδTCR–MR1–antigen complex starkly contrasts with all other TCR–MHC and TCR–MHC-I-like complex structures. Namely, the γδTCR binds underneath the MR1 antigen-binding cleft, where contacts are dominated by the MR1 α3 domain. A similar pattern of reactivity was observed for diverse MR1-restricted γδTCRs from multiple individuals. Accordingly, we simultaneously report MR1 as a ligand for human γδ T cells and redefine the parameters for TCR recognition.


Nature ◽  
2021 ◽  
Author(s):  
Justina X. Caushi ◽  
Jiajia Zhang ◽  
Zhicheng Ji ◽  
Ajay Vaghasia ◽  
Boyang Zhang ◽  
...  

AbstractPD-1 blockade unleashes CD8 T cells1, including those specific for mutation-associated neoantigens (MANA), but factors in the tumour microenvironment can inhibit these T cell responses. Single-cell transcriptomics have revealed global T cell dysfunction programs in tumour-infiltrating lymphocytes (TIL). However, the majority of TIL do not recognize tumour antigens2, and little is known about transcriptional programs of MANA-specific TIL. Here, we identify MANA-specific T cell clones using the MANA functional expansion of specific T cells assay3 in neoadjuvant anti-PD-1-treated non-small cell lung cancers (NSCLC). We use their T cell receptors as a ‘barcode’ to track and analyse their transcriptional programs in the tumour microenvironment using coupled single-cell RNA sequencing and T cell receptor sequencing. We find both MANA- and virus-specific clones in TIL, regardless of response, and MANA-, influenza- and Epstein–Barr virus-specific TIL each have unique transcriptional programs. Despite exposure to cognate antigen, MANA-specific TIL express an incompletely activated cytolytic program. MANA-specific CD8 T cells have hallmark transcriptional programs of tissue-resident memory (TRM) cells, but low levels of interleukin-7 receptor (IL-7R) and are functionally less responsive to interleukin-7 (IL-7) compared with influenza-specific TRM cells. Compared with those from responding tumours, MANA-specific clones from non-responding tumours express T cell receptors with markedly lower ligand-dependent signalling, are largely confined to HOBIThigh TRM subsets, and coordinately upregulate checkpoints, killer inhibitory receptors and inhibitors of T cell activation. These findings provide important insights for overcoming resistance to PD-1 blockade.


2018 ◽  
Vol 9 ◽  
Author(s):  
Diana Campillo-Davo ◽  
Fumihiro Fujiki ◽  
Johan M. J. Van den Bergh ◽  
Hans De Reu ◽  
Evelien L. J. M. Smits ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document