channel assembly
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 9)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Olga Kutova ◽  
Anton Pospelov ◽  
Irina Balalaeva

The modern paradigm of studying the processes of carcinogenesis and vital activity of tumor tissues implies increased attention to constituents of tumor microenvironment (TME) and their interactions. These interactions between the cells in TME can be mediated via protein junctions of different types. Connexins (Cnxs) are one of the major contributors to intercellular communication. They form gap junctions responsible for the transfer of ions, metabolites, peptides, miRNA, etc. between neighboring tumor cells as well as between tumor and stromal cells. Cnx hemichannels mediate purinergic signaling and bidirectional molecular transport with the extracellular environment. Additionally, Cnxs were reported to localize in tumor-derived exosomes and facilitate the release of their cargo. A large body of evidence implies that the role of connexins in cancer is multifaceted. Pro- or anti-tumorigenic properties of connexins are determined by their abundance, localization and functionality as well as channel assembly and non-channel functions. In this review we have summarized the data on the Cnxs contribution in TME and to the cancer initiation and progression.


2021 ◽  
Author(s):  
Jaakko Haverinen ◽  
Minna Hassinen ◽  
Matti Vornanen

ABSTRACTIn cardiac myocytes, the slow component of the delayed rectifier K+ current (IKs) ensures repolarization of action potential during beta-adrenergic activation or when other repolarizing K+ currents fail. As a key factor of cardiac repolarization IKs should be present in model species used for cardiovascular drug screening, preferably with pharmacological characteristics similar to those of the human IKs. To this end, we investigated the effects of inhibitors and activators of the IKs on KCNQ1 and KCNQ1+KCNE1 channels of the zebrafish, an important model species, in Chinese hamster ovary cells. Inhibitors of IKs, chromanol 293B and HMR-1556, inhibited zebrafish IKs channels with approximately similar potency as that of mammalian IKs. Chromanol 293B concentration for half-maximal inhibition (IC50) of zebrafish IKs was at 13.1±5.8 and 13.4±2.8 μM for KCNQ1 and KCNQ1+KCNE1 channels, respectively. HMR-1556 was a more potent inhibitor of zebrafish IKs with IC50=0.1±0.1 μM and 1.5±0.8 μM for KCNQ1 and KCNQ1+KCNE1 channels, respectively. R-L3 and mefenamic acid, generally identified as IKs activators, both inhibited zebrafish IKs. R-L3 almost completely inhibited zebrafish IKs generated by KCNQ1 and KCNQ1+KCNE1 channels with similar affinity (IC50 1.1±0.4 and 1.0±0.4 μM, respectively). Mefenamic acid partially blocked zebrafish KCNQ1 (IC50=9.5±4.8 μM) and completely blocked KCNQ1+KCNE1 channels (IC50=3.3±1.8 μM). Although zebrafish IKs responds to IKs inhibitors in the same way as mammalian IKs, its response to activators is atypical, probably due to the differences in the binding domain of KCNE1 to KCNQ1. Therefore, care must be taken when translating the results from zebrafish to humans.


2021 ◽  
Author(s):  
Jae Yeon Hwang ◽  
Huafeng Wang ◽  
Yonggang Lu ◽  
Masahito Ikawa ◽  
Jean-Ju Chung

In mammalian sperm cells, regulation of spatiotemporal Ca2+ signaling relies on the quadrilinear Ca2+ signaling nanodomains in the flagellar membrane. The sperm-specific, multi-subunit CatSper Ca2+ channel, which is crucial for sperm hyperactivated motility and male fertility, organizes the nanodomains. Here, we report CatSperτ, the C2cd6-encoded membrane-associating C2 domain protein, can independently migrate to the flagella and serve as a major targeting component of the CatSper channel complex. CatSperτ loss-of-function in mice demonstrates that it is essential for sperm hyperactivated motility and male fertility. CatSperτ targets the CatSper channel into the quadrilinear nanodomains in the flagella of developing spermatids, whereas it is dispensable for functional channel assembly. CatSperτ interacts with ciliary trafficking machinery in a C2-dependent manner. These findings provide insights into the CatSper channel trafficking to the Ca2+ signaling nanodomains and the shared molecular mechanisms of ciliary and flagellar membrane targeting.


2021 ◽  
Author(s):  
Amaury Monmeyran ◽  
Wafa Benyoussef ◽  
Philippe Thomen ◽  
Narimane Dahmane ◽  
Aurelie Baliarda ◽  
...  

Multispecies microbial adherent communities are widespread in nature and organisms but the principles of their assembly and development remain unclear. Yet, the demand to understand and predict the responses of such living communities to environmental changes is increasing, calling for new approaches. Here, we test the possibility to establish a simplified but relevant model of multispecies biofilm in a laboratory setup enabling in situ real-time monitoring of the community development and control of the environmental parameters in order to decipher the mechanisms underlying the formation of the community. Using video-microscopy and species combinatorial approach, we assess the global and individual species spatiotemporal development in millifluidic channels under constant flow of nutrients. Based on quantitative measurements of expansion kinetics, local dynamics and spatial distribution, we demonstrate that the four chosen species (Bacillus thuringiensis, Pseudomonas fluorescens, Kocuria varians and Rhodocyclus sp.) form a dynamical community that deterministically reaches its equilibrium after about 30 hours of growth. We evidence the emergence of complexity in this simplified community as reported by spatial heterogeneity rise and non-monotonic developmental kinetics. We find interspecies interactions consisting in competition for resources - in particular oxygen - and both direct and indirect physical interactions but no positive feedback. Thereby, we introduce a model of multispecies adherent community where effective couplings result from individual species quest for fitness optimization in a moving and heterogenous environment. This control and the understanding of this simplified experimental model shall open new avenues to apprehend adherent bacterial communities behavior in a context of rapid global change.


2021 ◽  
Author(s):  
Amado Carreras-Sureda ◽  
Laurence Abrami ◽  
Ji-Hee Kim ◽  
Maud Frieden ◽  
Monica Didier ◽  
...  

AbstractEfficient immune responses require Ca2+ fluxes across ORAI1 channels during engagement of T cell receptors (TCR) at the immune synapse (IS) between T cells and antigen presenting cells. Here, we show that ZDHHC20-mediated S-acylation of the ORAI1 channel at residue Cys143 is required for TCR assembly and signaling at the IS. Cys143 mutations reduced ORAI1 currents and store-operated Ca2+ entry in HEK-293 cells and nearly abrogated long-lasting Ca2+ elevations, NFATC1 translocation, and IL-2 secretion evoked by TCR engagement in Jurkat T cells. The acylation-deficient channel had reduced mobility in lipids, accumulated in cholesterol-poor domains, formed tiny clusters, failed to reach the IS and unexpectedly also prevented TCR recruitment to the IS. Our results establish S-acylation as a critical regulator of ORAI1 channel assembly and function at the IS and reveal that local Ca2+ fluxes are required for TCR recruitment to the synapse.


Author(s):  
Anantvir Singh Saini ◽  
Vijay Chatoorgoon ◽  
Dhanashree S. Ghadge

Abstract Supercritical flow experiments were conducted at University of Manitoba using supercritical flow facility-vertical (SFF-V), which is a two vertical parallel channel assembly. The working fluid was CO2 at supercritical pressure and was driven by natural convective forces rather than a pump. Different system pressures (7.4 MPa–9.1 MPa), inlet temperatures (7 °C–30.1 °C) and various outlet-channel k-factors were used. A total of eleven parallel channel out-of-phase instability boundary points were obtained and the details of those cases are reported herein. These results can be used for code validation, to enrich the limited database of supercritical parallel-channel instability and to lend further insight into supercritical flow instability in heated parallel channels.


2020 ◽  
Vol 117 (19) ◽  
pp. 10329-10338 ◽  
Author(s):  
Thuy N. Vien ◽  
Jinliang Wang ◽  
Leo C. T. Ng ◽  
Erhu Cao ◽  
Paul G. DeCaen

Genetic variants in PKD2 which encodes for the polycystin-2 ion channel are responsible for many clinical cases of autosomal dominant polycystic kidney disease (ADPKD). Despite our strong understanding of the genetic basis of ADPKD, we do not know how most variants impact channel function. Polycystin-2 is found in organelle membranes, including the primary cilium—an antennae-like structure on the luminal side of the collecting duct. In this study, we focus on the structural and mechanistic regulation of polycystin-2 by its TOP domain—a site with unknown function that is commonly altered by missense variants. We use direct cilia electrophysiology, cryogenic electron microscopy, and superresolution imaging to determine that variants of the TOP domain finger 1 motif destabilizes the channel structure and impairs channel opening without altering cilia localization and channel assembly. Our findings support the channelopathy classification of PKD2 variants associated with ADPKD, where polycystin-2 channel dysregulation in the primary cilia may contribute to cystogenesis.


2018 ◽  
Author(s):  
Xiaofen Liu ◽  
Guangyan Wu ◽  
Yi Yu ◽  
Xiaozhe Chen ◽  
Renci Ji ◽  
...  

The Orai channel is characterized by voltage independence, low conductance and high Ca2+ selectivity and plays an important role in Ca2+ influx through the plasma membrane. How the channel is activated and promotes Ca2+ permeation are not well understood. Here, we report the crystal structure and cryo-electron microscopy reconstruction of a Drosophila melanogaster Orai mutant (P288L) channel that is constitutively active according to electrophysiology. The open state of the Orai channel showed a hexameric assembly in which six TM1 helices in the center form the ion-conducting pore, and six TM4 helices in the periphery form extended long helices. Orai channel activation requires conformational transduction from TM4 to TM1 and eventually causes the basic section of TM1 to twist outward. The wider pore on the cytosolic side aggregates anions to increase the potential gradient across the membrane and thus facilitate Ca2+ permeation. The open-state structure of the Orai channel offers insights into channel assembly, channel activation and Ca2+ permeation.


Sign in / Sign up

Export Citation Format

Share Document