Understanding Phase Transitions in Supersymmetric Quantum Electrodynamics With Resurgence Theory

2021 ◽  
Vol 1 ◽  

Using resurgence theory to describe phase transitions in quantum field theory shows that information on non-perturbative effects like phase transitions can be obtained from a perturbative series expansion.

Author(s):  
Jean Zinn-Justin

Some equilibrium properties in statistical quantum field theory (QFT), that is, relativistic QFT at finite temperature are reviewed. Study of QFT at finite temperature is motivated by cosmological problems, high energy heavy ion collisions, and speculations about possible phase transitions, also searched for in numerical simulations. In particular, the situation of finite temperature phase transitions, or the limit of high temperature (an ultra-relativistic limit where the temperature is much larger than the physical masses of particles) are discussed. The concept of dimensional reduction emerges, in many cases, statistical properties of finite-temperature QFT in (1, d − 1) dimensions can be described by an effective classical statistical field theory in (d − 1) dimensions. Dimensional reduction generalizes a property already observed in the non-relativistic example of the Bose gas, and indicates that quantum effects are less important at high temperature. The corresponding technical tools are a mode-expansion of fields in the Euclidean time variable, singling out the zero modes of boson fields, followed by a local expansion of the resulting (d − 1)-dimensional effective field theory (EFT). Additional physical intuition about QFT at finite temperature in (1, d−1) dimensions can be gained by considering it as a classical statistical field theory in d dimensions, with finite size in one dimension. This identification makes an analysis of finite temperature QFT in terms of the renormalization group (RG), and the theory of finite-size effects of the classical theory, possible. These ideas are illustrated with several simple examples, the φ4 field theory, the non-linear σ-model, the Gross–Neveu model and some gauge theories.


1991 ◽  
Vol 06 (14) ◽  
pp. 1299-1304 ◽  
Author(s):  
G. DEMARCO ◽  
C. FOSCO ◽  
R.C. TRINCHERO

We construct a unitary and renormalizable quantum field theory in 3+1 dimensions describing the interaction of chiral massless fermions with massive or massless photons.


Author(s):  
Biswaranjan Dikshit

In quantum field theory (QFT), it is well known that when Feynman diagrams containing loops are evaluated to account for self interactions, probability amplitude comes out to be infinite which is physically not admissible. So, to make the QFT convergent, various renormalization methods are conventionally followed in which an additional (infinite) counter term is postulated which neutralizes the original infinity generated by diagram. The resulting finite values of amplitudes have agreed with experiments with surprising accuracy. However, proponents of renormalization methods acknowledged that this ad-hoc procedure of subtraction of infinity from infinity to reach at a finite value is not at all satisfactory and there is no physical basis for bringing in the counter term. So, it is desirable to establish a method in QFT which does not generate any infinite term (thus not requiring renormalization), but which predicts same results as conventional methods do. In this paper, we describe such a technique taking self interaction quantum electrodynamics diagram representing electron or photon self energy. In our method, no problem of infinity arises and hence renormalization is not necessary. Still, the dependence of calculated probability amplitude on physical variables in our technique comes out to be same as conventional methods. Using similar procedure, we hope, the problem of non-renormalizability of quantum gravity may be solved in future.


1968 ◽  
Vol 17 (68) ◽  
pp. 509-562 ◽  
Author(s):  
R.D. Mattuck ◽  
Börje Johansson

Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 43 ◽  
Author(s):  
Akihiro Nishiyama ◽  
Shigenori Tanaka ◽  
Jack A. Tuszynski

We derive time evolution equations, namely the Klein–Gordon equations for coherent fields and the Kadanoff–Baym equations in quantum electrodynamics (QED) for open systems (with a central region and two reservoirs) as a practical model of quantum field theory of the brain. Next, we introduce a kinetic entropy current and show the H-theorem in the Hartree–Fock approximation with the leading-order (LO) tunneling variable expansion in the 1st order approximation for the gradient expansion. Finally, we find the total conserved energy and the potential energy for time evolution equations in a spatially homogeneous system. We derive the Josephson current due to quantum tunneling between neighbouring regions by starting with the two-particle irreducible effective action technique. As an example of potential applications, we can analyze microtubules coupled to a water battery surrounded by a biochemical energy supply. Our approach can be also applied to the information transfer between two coherent regions via microtubules or that in networks (the central region and the N res reservoirs) with the presence of quantum tunneling.


Sign in / Sign up

Export Citation Format

Share Document