scholarly journals Non-Equilibrium Quantum Electrodynamics in Open Systems as a Realizable Representation of Quantum Field Theory of the Brain

Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 43 ◽  
Author(s):  
Akihiro Nishiyama ◽  
Shigenori Tanaka ◽  
Jack A. Tuszynski

We derive time evolution equations, namely the Klein–Gordon equations for coherent fields and the Kadanoff–Baym equations in quantum electrodynamics (QED) for open systems (with a central region and two reservoirs) as a practical model of quantum field theory of the brain. Next, we introduce a kinetic entropy current and show the H-theorem in the Hartree–Fock approximation with the leading-order (LO) tunneling variable expansion in the 1st order approximation for the gradient expansion. Finally, we find the total conserved energy and the potential energy for time evolution equations in a spatially homogeneous system. We derive the Josephson current due to quantum tunneling between neighbouring regions by starting with the two-particle irreducible effective action technique. As an example of potential applications, we can analyze microtubules coupled to a water battery surrounded by a biochemical energy supply. Our approach can be also applied to the information transfer between two coherent regions via microtubules or that in networks (the central region and the N res reservoirs) with the presence of quantum tunneling.

2021 ◽  
Vol 1 ◽  

Using resurgence theory to describe phase transitions in quantum field theory shows that information on non-perturbative effects like phase transitions can be obtained from a perturbative series expansion.


1991 ◽  
Vol 06 (14) ◽  
pp. 1299-1304 ◽  
Author(s):  
G. DEMARCO ◽  
C. FOSCO ◽  
R.C. TRINCHERO

We construct a unitary and renormalizable quantum field theory in 3+1 dimensions describing the interaction of chiral massless fermions with massive or massless photons.


Author(s):  
Biswaranjan Dikshit

In quantum field theory (QFT), it is well known that when Feynman diagrams containing loops are evaluated to account for self interactions, probability amplitude comes out to be infinite which is physically not admissible. So, to make the QFT convergent, various renormalization methods are conventionally followed in which an additional (infinite) counter term is postulated which neutralizes the original infinity generated by diagram. The resulting finite values of amplitudes have agreed with experiments with surprising accuracy. However, proponents of renormalization methods acknowledged that this ad-hoc procedure of subtraction of infinity from infinity to reach at a finite value is not at all satisfactory and there is no physical basis for bringing in the counter term. So, it is desirable to establish a method in QFT which does not generate any infinite term (thus not requiring renormalization), but which predicts same results as conventional methods do. In this paper, we describe such a technique taking self interaction quantum electrodynamics diagram representing electron or photon self energy. In our method, no problem of infinity arises and hence renormalization is not necessary. Still, the dependence of calculated probability amplitude on physical variables in our technique comes out to be same as conventional methods. Using similar procedure, we hope, the problem of non-renormalizability of quantum gravity may be solved in future.


2020 ◽  
Vol 35 (33) ◽  
pp. 2050210
Author(s):  
V. N. Velizhanin

We present a simple method for analytic continuation of harmonic sums near negative and positive integer numbers. We provide a precomputed database for the exact expansion of harmonic sums over a small parameter near these integer numbers, along with MATHEMATICA code, which shows the application of the database for actual problems. We also provide the FORM code that was used to obtain the database mentioned above. The applications of the obtained database for the study of evolution equations in the quantum field theory are discussed.


2014 ◽  
Vol 29 (05) ◽  
pp. 1450026 ◽  
Author(s):  
Fabio Siringo

The principle of stationary variance is advocated as a viable variational approach to quantum field theory (QFT). The method is based on the principle that the variance of energy should be at its minimum when the state of a quantum system reaches its best approximation for an eigenstate. While not too much popular in quantum mechanics (QM), the method is shown to be valuable in QFT and three special examples are given in very different areas ranging from Heisenberg model of antiferromagnetism (AF) to quantum electrodynamics (QED) and gauge theories.


Sign in / Sign up

Export Citation Format

Share Document