Momentum Conservation Law in Symplectic Integrators for Partial Differential Equations

2014 ◽  
Vol 83 (12) ◽  
pp. 123003 ◽  
Author(s):  
Narimasa Sasa
2002 ◽  
Vol 13 (5) ◽  
pp. 545-566 ◽  
Author(s):  
STEPHEN C. ANCO ◽  
GEORGE BLUMAN

An effective algorithmic method is presented for finding the local conservation laws for partial differential equations with any number of independent and dependent variables. The method does not require the use or existence of a variational principle and reduces the calculation of conservation laws to solving a system of linear determining equations similar to that for finding symmetries. An explicit construction formula is derived which yields a conservation law for each solution of the determining system. In the first of two papers (Part I), examples of nonlinear wave equations are used to exhibit the method. Classification results for conservation laws of these equations are obtained. In a second paper (Part II), a general treatment of the method is given.


2012 ◽  
Vol 24 (10) ◽  
pp. 1250030 ◽  
Author(s):  
LUCÍA BUA ◽  
IOAN BUCATARU ◽  
MODESTO SALGADO

In this paper, we study symmetries, Newtonoid vector fields, conservation laws, Noether's theorem and its converse, in the framework of the k-symplectic formalism, using the Frölicher–Nijenhuis formalism on the space of k1-velocities of the configuration manifold.For the case k = 1, it is well known that Cartan symmetries induce and are induced by constants of motions, and these results are known as Noether's theorem and its converse. For the case k > 1, we provide a new proof for Noether's theorem, which shows that, in the k-symplectic formalism, each Cartan symmetry induces a conservation law. We prove that, under some assumptions, the converse of Noether's theorem is also true and we provide examples when this is not the case. We also study the relations between dynamical symmetries, Newtonoid vector fields, Cartan symmetries and conservation laws, showing when one of them will imply the others. We use several examples of partial differential equations to illustrate when these concepts are related and when they are not.


2016 ◽  
Vol 30 (28n29) ◽  
pp. 1640003 ◽  
Author(s):  
Stephen C. Anco

Symmetry properties of conservation laws of partial differential equations are developed by using the general method of conservation law multipliers. As main results, simple conditions are given for characterizing when a conservation law and its associated conserved quantity are invariant (and, more generally, homogeneous) under the action of a symmetry. These results are used to show that a recent conservation law formula (due to Ibragimov) is equivalent to a standard formula for the action of an infinitesimal symmetry on a conservation law multiplier.


2018 ◽  
Vol 21 (3) ◽  
pp. 150-159
Author(s):  
N. G. Khor’kova

Популярное в математике понятие интегрируемости дифференциальных уравнений (и столь же разнообразно трактуемое) тесно связано с существованием симметрий и законов сохранения. Все известные интегрируемые дифференциальные уравнения обладают бесконечными сериями симметрий и (или) законов сохранения. Однако также имеется целый ряд уравнений, важных для приложений, но имеющих крайне скудный запас симметрий или законов сохранения. Попытки расширить понятия симметрии и закона сохранения предпринимались разными авторами, и на эту тему имеется обширная литература. В данной статье представлен следующий результат. Если ℓ-нормальная система дифференциальных уравнений в частных производных имеет когомологически нетривиальный закон сохранения, то этот закон сохранения порождает бесконечную серию нелокальных законов сохранения. Этот факт обобщает аналогичный результат статьи автора для дифференциальных уравнений (не систем). Результат получен в рамках геометрической теории дифференциальных уравнений в частных производных. Согласно геометрическому подходу, многообразие, снабженное конечномерным распределением, удовлетворяющим условиям интегрируемости Фробениуса, называется диффеотопом (diffiety), если локально оно имеет вид бесконечно продолженного уравнения Ɛ∞. Диффеотопы являются объектами категории дифференциальных уравнений, введенной А.М. Виноградовым. Под симметриями уравнения понимают преобразования (конечные или инфинитизимальные) бесконечного продолжения уравнения, которые сохраняют распределение Картана, а под законами сохранения – (n-1)-e классы когомологий горизонтального комплекса де Рама уравнения, где n – число независимых переменных уравнения. Накрытием называется эпиморфизм  τ:Ɛ⟶ Ɛ∞ в категории дифференциальных уравнений, порождающий изоморфизм распределений. Симметрии и законы сохранения диффеотопа ࣟƐ называются нелокальными симметриями и законами сохранения уравнения ࣟƐ  Выбор подходящего накрытия позволяет получать новые (нелокальные) симметрии и законы сохранения исследуемого уравнения. В работе приведена конструкция одного накрытия и доказано существование бесконечных серий нелокальных законов сохранения у широкого класса систем дифференциальных уравнений в частных производных.системы дифференциальных уравнений в частных производных; накрытия дифференциальных уравнений; нелокальные симметрии и законы сохранения  The notion of integrability of differential equations is closely connected with the existence of symmetries and conservation laws. All known integrable differential equations have infinite series of symmetries and (or) conservation laws. However, there is also a number of equations that are important for applications, but with an extremely scarce stock of symmetries or conservation laws. Attempts to extend the concepts of symmetry and conservation law were made by different authors. This article presents the following result. If a ℓ-normal system of partial differential equations has a cohomologically nontrivial conservation law, then this conservation law generates an infinite series of non-local conservation laws. This fact generalizes the analogous result of the author for differential equations (not systems). The result is obtained within the framework of geometrical theory of partial differential equations (PDE). A manifold supplied with an infinite-dimensional distribution satisfying the Frobenius complete integrability condition is called a diffiety, if it is locally in the form of  Ɛ∞. Diffieties are objects of the category of differential equations introduced by A.M. Vinogradov. Symmetries of PDE are transformations (finite or infinitesimal) of the infinite prolongation  Ɛ∞ preserving the Cartan distribution, while conservation laws are (n-1)-cohomology classes of the horizontal de Rham cohomology. If a covering τ:Ɛ⟶ Ɛ∞ is given, then symmetries and conservation laws of the diffiety Ɛ are called nonlocal symmetries and conservation laws of the equation Ɛ .In appropriate coverings one can get new (nonlocal) symmetries and conservation laws for an equation under consideration. In this paper we investigate one covering and prove the existence of infinite series of nonlocal conservation laws.   


Acta Numerica ◽  
1992 ◽  
Vol 1 ◽  
pp. 243-286 ◽  
Author(s):  
J. M. Sanz-Serna

In the sciences, situations where dissipation is not significant may invariably be modelled by Hamiltonian systems of ordinary, or partial, differential equations. Symplectic integrators are numerical methods specifically aimed at advancing in time the solution of Hamiltonian systems. Roughly speaking, ‘symplecticness’ is a characteristic property possessed by the solutions of Hamiltonian problems. A numerical method is called symplectic if, when applied to Hamiltonian problems, it generates numerical solutions which inherit the property of symplecticness.


Sign in / Sign up

Export Citation Format

Share Document