scholarly journals Replica Exchange Particle-Gibbs Method with Ancestor Sampling

2020 ◽  
Vol 89 (10) ◽  
pp. 104801
Author(s):  
Hiroaki Inoue ◽  
Koji Hukushima ◽  
Toshiaki Omori
Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 115
Author(s):  
Hiroaki Inoue ◽  
Koji Hukushima ◽  
Toshiaki Omori

Extracting latent nonlinear dynamics from observed time-series data is important for understanding a dynamic system against the background of the observed data. A state space model is a probabilistic graphical model for time-series data, which describes the probabilistic dependence between latent variables at subsequent times and between latent variables and observations. Since, in many situations, the values of the parameters in the state space model are unknown, estimating the parameters from observations is an important task. The particle marginal Metropolis–Hastings (PMMH) method is a method for estimating the marginal posterior distribution of parameters obtained by marginalization over the distribution of latent variables in the state space model. Although, in principle, we can estimate the marginal posterior distribution of parameters by iterating this method infinitely, the estimated result depends on the initial values for a finite number of times in practice. In this paper, we propose a replica exchange particle marginal Metropolis–Hastings (REPMMH) method as a method to improve this problem by combining the PMMH method with the replica exchange method. By using the proposed method, we simultaneously realize a global search at a high temperature and a local fine search at a low temperature. We evaluate the proposed method using simulated data obtained from the Izhikevich neuron model and Lévy-driven stochastic volatility model, and we show that the proposed REPMMH method improves the problem of the initial value dependence in the PMMH method, and realizes efficient sampling of parameters in the state space models compared with existing methods.


2018 ◽  
Vol 28 (3) ◽  
pp. 265 ◽  
Author(s):  
Son Tung Ngo

The Amyloid beta (Aβ) oligomers are characterized as critical cytotoxic materials in Alzheimer’s disease (AD) pathogenesis. Structural details of transmembrane oligomers are inevitably necessary to design/search potential inhibitor due to treat AD. However, the experimental detections for structural modify of low-order Aβ oligomers are precluded due to the extremely dynamic fluctuation of the oligomers. In this project, the transmembrane Italian-mutant (E22K) 3Aβ11-40 (tmE22K 3Aβ11-40) was extensively investigated upon the temperature replica exchange molecular dynamics (REMD) simulations. The structural changes of the trimer when replacing the negative charged residue E22 by a positively charged residue K were monitored over simulation intervals. The oligomer size was turned to be larger and the increase of β-content was recorded. The momentous gain of intermolecular contacts with DPPC molecules implies that tmE22K 3Aβ11-40 easier self-inserts into the membrane than the WT one. Furthermore, the tighter interaction between constituting monomers was indicated implying that the E22K mutation probably enhances the Aβ fibril formation. The results are in good agreement with experiments that E22K amyloid is self-aggregate faster than the WT form. Details information of tmE22K trimer structure and kinetics probably yield the understanding of AD mechanism.


2021 ◽  
Vol 263 ◽  
pp. 107911
Author(s):  
Chudong Xu ◽  
Shengdong Lu ◽  
Yongfeng Kong ◽  
Wanjie Xiong

Author(s):  
Sompriya Chatterjee ◽  
Abbas Salimi ◽  
Jin Yong Lee

The accumulation of ΔK280 tau mutant resulting in neurotoxic oligomeric aggregates is an important but yet mysterious procedure in Alzheimer’s disease (AD) development. Recently, we proposed a histidine tautomerization hypothesis...


2010 ◽  
Vol 11 (12) ◽  
pp. 3266-3274 ◽  
Author(s):  
Rebecca Notman ◽  
E. Emre Oren ◽  
Candan Tamerler ◽  
Mehmet Sarikaya ◽  
Ram Samudrala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document