scholarly journals Open Quantum Dynamics Theory for Non-Equilibrium Work: Hierarchical Equations of Motion Approach

2021 ◽  
Vol 90 (3) ◽  
pp. 033001
Author(s):  
Souichi Sakamoto ◽  
Yoshitaka Tanimura
2021 ◽  
Author(s):  
Yuki Iwamoto ◽  
Yoshitaka Tanimura

Abstract Discretizing distribution function in a phase space for an efficient quantum dynamics simulation is non-trivial challenge, in particular for a case that a system is further coupled to environmental degrees of freedom. Such open quantum dynamics is described by a reduced equation of motion (REOM) most notably by a quantum Fokker-Planck equation (QFPE) for a Wigner distribution function (WDF). To develop a discretization scheme that is stable for numerical simulations from the REOM approach, we find that a two-dimensional (2D) periodically invariant system-bath (PISB) model with two heat baths is an ideal platform not only for a periodical system but also for a system confined by a potential. We then derive the numerically ''exact'' hierarchical equations of motion (HEOM) for a discrete WDF in terms of periodically invariant operators in both coordinate and momentum spaces. The obtained equations can treat non-Markovian heat-bath in a non-perturbative manner at finite temperatures regardless of the mesh size. The stability of the present scheme is demonstrated in a high-temperature Markovian case by numerically integrating the discrete QFPE with by a coarse mesh for a 2D free rotor and harmonic potential systems for an initial condition that involves singularity.


2009 ◽  
Vol T135 ◽  
pp. 014033 ◽  
Author(s):  
Aurelian Isar

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 77
Author(s):  
Angus J. Dunnett ◽  
Alex W. Chin

Simulating the non-perturbative and non-Markovian dynamics of open quantum systems is a very challenging many body problem, due to the need to evolve both the system and its environments on an equal footing. Tensor network and matrix product states (MPS) have emerged as powerful tools for open system models, but the numerical resources required to treat finite-temperature environments grow extremely rapidly and limit their applications. In this study we use time-dependent variational evolution of MPS to explore the striking theory of Tamascelli et al. (Phys. Rev. Lett. 2019, 123, 090402.) that shows how finite-temperature open dynamics can be obtained from zero temperature, i.e., pure wave function, simulations. Using this approach, we produce a benchmark dataset for the dynamics of the Ohmic spin-boson model across a wide range of coupling strengths and temperatures, and also present a detailed analysis of the numerical costs of simulating non-equilibrium steady states, such as those emerging from the non-perturbative coupling of a qubit to baths at different temperatures. Despite ever-growing resource requirements, we find that converged non-perturbative results can be obtained, and we discuss a number of recent ideas and numerical techniques that should allow wide application of MPS to complex open quantum systems.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 905
Author(s):  
Nina Megier ◽  
Manuel Ponzi ◽  
Andrea Smirne ◽  
Bassano Vacchini

Simple, controllable models play an important role in learning how to manipulate and control quantum resources. We focus here on quantum non-Markovianity and model the evolution of open quantum systems by quantum renewal processes. This class of quantum dynamics provides us with a phenomenological approach to characterise dynamics with a variety of non-Markovian behaviours, here described in terms of the trace distance between two reduced states. By adopting a trajectory picture for the open quantum system evolution, we analyse how non-Markovianity is influenced by the constituents defining the quantum renewal process, namely the time-continuous part of the dynamics, the type of jumps and the waiting time distributions. We focus not only on the mere value of the non-Markovianity measure, but also on how different features of the trace distance evolution are altered, including times and number of revivals.


2018 ◽  
Vol 20 (10) ◽  
pp. 103037 ◽  
Author(s):  
Anatoly Yu Smirnov ◽  
Mohammad H Amin

Sign in / Sign up

Export Citation Format

Share Document