Depth-dependent Spin Polarizations Induced in Cu(001) and Cu(111) Layers of Co/Cu Multilayers Determined by Resonant X-ray Magnetic Scattering at the Cu K Absorption Edge

2021 ◽  
Vol 90 (9) ◽  
pp. 094703
Author(s):  
Taku Konishi ◽  
Terumasa Iwashita ◽  
Akihiro Yoshida ◽  
Nobuyoshi Hosoito
2018 ◽  
Vol 87 (10) ◽  
pp. 104707 ◽  
Author(s):  
Nobuyoshi Hosoito ◽  
Ryuichiro Yamagishi ◽  
Kazuki Fukui ◽  
Shuho Hanasaka ◽  
Shinjiro Amasaki

Author(s):  
R. L. Stears

Because of the nature of the bacterial endospore, little work has been done on analyzing their elemental distribution and composition in the intact, living, hydrated state. The majority of the qualitative analysis entailed intensive disruption and processing of the endospores, which effects their cellular integrity and composition.Absorption edge imaging permits elemental analysis of hydrated, unstained specimens at high resolution. By taking advantage of differential absorption of x-ray photons in regions of varying elemental composition, and using a high brightness, tuneable synchrotron source to obtain monochromatic x-rays, contact x-ray micrographs can be made of unfixed, intact endospores that reveal sites of elemental localization. This study presents new data demonstrating the application of x-ray absorption edge imaging to produce elemental information about nitrogen (N) and calcium (Ca) localization using Bacillus thuringiensis as the test specimen.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Timon Grabovac ◽  
Ewa Gorecka ◽  
Damian Pociecha ◽  
Nataša Vaupotič

The structure of a continuous-grid chiral cubic phase made of achiral constituent molecules is a hot topic in the field of thermotropic liquid crystals. Several structural models have been proposed so far. Resonant X-ray scattering (RXS), which gives information on the molecular orientation in the unit cell, could be applied to select the most appropriate model. We modeled the RXS response for the recently proposed chiral cubic phase structure with an all-hexagon chiral continuous grid. A tensor form factor of a unit cell is constructed, which enables calculation of intensities of peaks for all Miller indices. We find that all the symmetry allowed peaks are resonantly enhanced, and their intensity is much stronger than the intensity of the symmetry forbidden (resonant) peaks. In particular, we predict that a strong resonant enhancement of the symmetry allowed peaks (011) and (002), not observed in a nonresonant scattering, could be observed by RXS at the carbon absorption edge. By RXS at the sulfur absorption edge, one might observe a resonant peak (113) and resonantly enhanced peak (233), and resonant enhancement of all the peaks that are observed in a nonresonant scattering, which probably hide the rest of the predicted resonant peaks.


Sign in / Sign up

Export Citation Format

Share Document