Metal Foam as Positive Electrode Current Collector for LiFePO4-Based Li-Ion Battery

2013 ◽  
Vol 52 (10S) ◽  
pp. 10MB13 ◽  
Author(s):  
Gui Fu Yang ◽  
Jae Sun Song ◽  
Hyung Yoon Kim ◽  
Seung Ki Joo
Author(s):  
Ross Drummond ◽  
Chuan Cheng ◽  
Patrick Grant ◽  
Stephen Duncan

Abstract Graded electrodes for Li-ion batteries aim to exploit controlled variations in local electrode microstructure to improve overall battery performance, including reduced degradation rates and increased capacity at high discharge rates. However, the mechanisms by which grading might deliver performance benefit, and under what conditions, are not yet fully understood. A Li-ion battery electrochemical model (a modified Doyle-Fuller-Newman type model capable of generating impedance functions) is developed in which local microstructural changes are captured in order to understand why and when graded electrodes can offer performance benefits. Model predictions are evaluated against experimental electrochemical impedance data obtained from electrodes with micro-scale, controlled variations in microstructure. A region locally enriched with carbon at the electrode/current collector interface is shown to significantly reduce the overpotential distribution across the thickness of a LiFePO$_4$-based Li-ion battery cathode, resulting in a lower charge transfer resistance and impedance. The insights gained from the LiFePO$_4$-based electrodes are generalised to wider design principles for both uniform and graded Li-ion battery electrodes.


2021 ◽  
Vol 126 ◽  
pp. 107013
Author(s):  
Chloé Bizot ◽  
Marie-Anne Blin ◽  
Pierre Guichard ◽  
Jonathan Hamon ◽  
Vincent Fernandez ◽  
...  

Author(s):  
Arcangelo Celeste ◽  
Mariarosaria Tuccillo ◽  
Antonino Santoni ◽  
Priscilla Reale ◽  
Sergio Brutti ◽  
...  

Author(s):  
Roozbeh Pouyanmehr ◽  
Morteza Pakseresht ◽  
Reza Ansari ◽  
Mohammad Kazem Hassanzadeh-Aghdam

One of the limiting factors in the life of lithium-ion batteries is the diffusion-induced stresses on their electrodes that cause cracking and consequently, failure. Therefore, improving the structure of these electrodes to be able to withstand these stresses is one of the ways that can extend the life of the batteries as well as improve their safety. In this study, the effects of adding graphene nanoplatelets and microparticles into the active plate and current collectors, respectively, on the diffusion induced stresses in both layered and bilayered electrodes are numerically investigated. The micromechanical models are employed to predict the mechanical properties of both graphene nanoplatelet-reinforced Sn-based nanocomposite active plate and silica microparticle-reinforced copper composite current collector. The effect of particle size and volume fraction in the current collector on diffusion induced stresses has been studied. The results show that in electrodes with a higher volume fraction of particles and smaller particle radii, decreased diffusion induced stresses in both the active plate and the current collector are observed. These additions will also result in a significant decrease in the bending of the electrode.


2020 ◽  
Vol 98 (9) ◽  
pp. 554-563
Author(s):  
Bruno Gélinas ◽  
Thomas Bibienne ◽  
Mickaël Dollé ◽  
Dominic Rochefort

Used in their pure, undiluted form, ionic liquids usually result in Li-ion battery electrolytes with inadequate performance due low Li+ transport numbers (tLi+). Alternatively, they can be used as additives dissolved in carbonates to maintain a high tLi+ while providing the electrolyte with additional properties such as resistance to combustion, current collector passivation, and decreased Li dendritic growth. Additional properties can be imparted to the ionic liquid via the modification of their structure. Ionic liquids modified with electroactive moieties such as ferrocene (Fc-IL) can be used as an additive in Li-ion battery (LiB) electrolytes to prevent cathode over-oxidation via the redox shuttle mechanism. The aim of the present work is to evaluate the properties of LiB electrolytes modified with such Fc-IL at different concentrations. At low concentrations (0.3–0.5 mol/L), the redox-active ionic liquid behaves as expected for a redox shuttle. We show that at 1 mol/L, however, the redox ionic liquid yields a different discharge behavior after the overcharging step, providing an increase in discharge capacity. This behavior is linked to the deposition of the ferrocenium-IL at the positive electrode. Such electrolyte is non-flammable and is highly efficient to achieve shuttling of excess charge. Based on this principle, it is expected that novel ionic liquids can be designed for development of other types of additives and contribute to developing safer battery electrolytes. As a part of this commemorative issue, this contribution highlights the type of collaborative research currently being done on energy storage devices at the Department of Chemistry at the Université de Montréal.


Sign in / Sign up

Export Citation Format

Share Document