scholarly journals S-wave Velocity Structure Beneath the KS31 Seismic Station in Wonju, Korea Using the Joint Inversion of Receiver Functions and Surface-wave Dispersion Curves and the H-κ Stacking Method

2012 ◽  
Vol 15 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Tae-Hyeon Jeon ◽  
Ki-Young Kim ◽  
Yong-Cheol Park ◽  
Ik-Bum Kang
2017 ◽  
Author(s):  
Valentina Socco ◽  
Farbod Khosro Anjom ◽  
Cesare Comina ◽  
Daniela Teodor

2019 ◽  
Vol 109 (5) ◽  
pp. 1922-1934 ◽  
Author(s):  
Liam D. Toney ◽  
Robert E. Abbott ◽  
Leiph A. Preston ◽  
David G. Tang ◽  
Tori Finlay ◽  
...  

Abstract In preparation for the next phase of the Source Physics Experiments, we acquired an active‐source seismic dataset along two transects totaling more than 30 km in length at Yucca Flat, Nevada, on the Nevada National Security Site. Yucca Flat is a sedimentary basin which has hosted more than 650 underground nuclear tests (UGTs). The survey source was a novel 13,000 kg modified industrial pile driver. This weight drop source proved to be broadband and repeatable, richer in low frequencies (1–3 Hz) than traditional vibrator sources and capable of producing peak particle velocities similar to those produced by a 50 kg explosive charge. In this study, we performed a joint inversion of P‐wave refraction travel times and Rayleigh‐wave phase‐velocity dispersion curves for the P‐ and S‐wave velocity structure of Yucca Flat. Phase‐velocity surface‐wave dispersion measurements were obtained via the refraction microtremor method on 1 km arrays, with 80% overlap. Our P‐wave velocity models verify and expand the current understanding of Yucca Flat’s subsurface geometry and bulk properties such as depth to Paleozoic basement and shallow alluvium velocity. Areas of disagreement between this study and the current geologic model of Yucca Flat (derived from borehole studies) generally correlate with areas of widely spaced borehole control points. This provides an opportunity to update the existing model, which is used for modeling groundwater flow and radionuclide transport. Scattering caused by UGT‐related high‐contrast velocity anomalies substantially reduced the number and frequency bandwidth of usable dispersion picks. The S‐wave velocity models presented in this study agree with existing basin‐wide studies of Yucca Flat, but are compromised by diminished surface‐wave coherence as a product of this scattering. As nuclear nonproliferation monitoring moves from teleseismic to regional or even local distances, such high‐frequency (>5  Hz) scattering could prove challenging when attempting to discriminate events in areas of previous testing.


2020 ◽  
Vol 222 (3) ◽  
pp. 1639-1655
Author(s):  
Xin Zhang ◽  
Corinna Roy ◽  
Andrew Curtis ◽  
Andy Nowacki ◽  
Brian Baptie

SUMMARY Seismic body wave traveltime tomography and surface wave dispersion tomography have been used widely to characterize earthquakes and to study the subsurface structure of the Earth. Since these types of problem are often significantly non-linear and have non-unique solutions, Markov chain Monte Carlo methods have been used to find probabilistic solutions. Body and surface wave data are usually inverted separately to produce independent velocity models. However, body wave tomography is generally sensitive to structure around the subvolume in which earthquakes occur and produces limited resolution in the shallower Earth, whereas surface wave tomography is often sensitive to shallower structure. To better estimate subsurface properties, we therefore jointly invert for the seismic velocity structure and earthquake locations using body and surface wave data simultaneously. We apply the new joint inversion method to a mining site in the United Kingdom at which induced seismicity occurred and was recorded on a small local network of stations, and where ambient noise recordings are available from the same stations. The ambient noise is processed to obtain inter-receiver surface wave dispersion measurements which are inverted jointly with body wave arrival times from local earthquakes. The results show that by using both types of data, the earthquake source parameters and the velocity structure can be better constrained than in independent inversions. To further understand and interpret the results, we conduct synthetic tests to compare the results from body wave inversion and joint inversion. The results show that trade-offs between source parameters and velocities appear to bias results if only body wave data are used, but this issue is largely resolved by using the joint inversion method. Thus the use of ambient seismic noise and our fully non-linear inversion provides a valuable, improved method to image the subsurface velocity and seismicity.


2019 ◽  
Vol 24 (1) ◽  
pp. 101-120
Author(s):  
Kajetan Chrapkiewicz ◽  
Monika Wilde-Piórko ◽  
Marcin Polkowski ◽  
Marek Grad

AbstractNon-linear inverse problems arising in seismology are usually addressed either by linearization or by Monte Carlo methods. Neither approach is flawless. The former needs an accurate starting model; the latter is computationally intensive. Both require careful tuning of inversion parameters. An additional challenge is posed by joint inversion of data of different sensitivities and noise levels such as receiver functions and surface wave dispersion curves. We propose a generic workflow that combines advantages of both methods by endowing the linearized approach with an ensemble of homogeneous starting models. It successfully addresses several fundamental issues inherent in a wide range of inverse problems, such as trapping by local minima, exploitation of a priori knowledge, choice of a model depth, proper weighting of data sets characterized by different uncertainties, and credibility of final models. Some of them are tackled with the aid of novel 1D checkerboard tests—an intuitive and feasible addition to the resolution matrix. We applied our workflow to study the south-western margin of the East European Craton. Rayleigh wave phase velocity dispersion and P-wave receiver function data were gathered in the passive seismic experiment “13 BB Star” (2013–2016) in the area of the crust recognized by previous borehole and refraction surveys. Final models of S-wave velocity down to 300 km depth beneath the array are characterized by proximity in the parameter space and very good data fit. The maximum value in the mantle is higher by 0.1–0.2 km/s than reported for other cratons.


Sign in / Sign up

Export Citation Format

Share Document