scholarly journals Use of sports tourism to motivate older adults to maintain increased aerobic exercise capacity and reduced arterial stiffness after supervised training: a non-randomized controlled trial

2021 ◽  
Vol 70 (5) ◽  
pp. 337-345
Author(s):  
Toru Yoshikawa ◽  
Asako Zempo-Miyaki ◽  
Takeshi Otsuki
2021 ◽  
pp. 1-12
Author(s):  
Fang Yu ◽  
David M. Vock ◽  
Lin Zhang ◽  
Dereck Salisbury ◽  
Nathaniel W. Nelson ◽  
...  

Background: Aerobic exercise has shown inconsistent cognitive effects in older adults with Alzheimer’s disease (AD) dementia. Objective: To examine the immediate and longitudinal effects of 6-month cycling on cognition in older adults with AD dementia. Methods: This randomized controlled trial randomized 96 participants (64 to cycling and 32 to stretching for six months) and followed them for another six months. The intervention was supervised, moderate-intensity cycling for 20–50 minutes, 3 times a week for six months. The control was light-intensity stretching. Cognition was assessed at baseline, 3, 6, 9, and 12 months using the AD Assessment Scale-Cognition (ADAS-Cog). Discrete cognitive domains were measured using the AD Uniform Data Set battery. Results: The participants were 77.4±6.8 years old with 15.6±2.9 years of education, and 55%were male. The 6-month change in ADAS-Cog was 1.0±4.6 (cycling) and 0.1±4.1 (stretching), which were both significantly less than the natural 3.2±6.3-point increase observed naturally with disease progression. The 12-month change was 2.4±5.2 (cycling) and 2.2±5.7 (control). ADAS-Cog did not differ between groups at 6 (p = 0.386) and 12 months (p = 0.856). There were no differences in the 12-month rate of change in ADAS-Cog (0.192 versus 0.197, p = 0.967), memory (–0.012 versus –0.019, p = 0.373), executive function (–0.020 versus –0.012, p = 0.383), attention (–0.035 versus –0.033, p = 0.908), or language (–0.028 versus –0.026, p = 0.756). Conclusion: Exercise may reduce decline in global cognition in older adults with mild-to-moderate AD dementia. Aerobic exercise did not show superior cognitive effects to stretching in our pilot trial, possibly due to the lack of power.


2020 ◽  
Author(s):  
Eric Vidoni ◽  
Jill K Morris ◽  
Amber Watts ◽  
Mark Perry ◽  
Jon Clutton ◽  
...  

Background: Our goal was to investigate the role of physical exercise to protect brain health as we age, including the potential to mitigate Alzheimer's-related pathology. We assessed the effect of 52 weeks of a supervised aerobic exercise program on amyloid accumulation, cognitive performance, and brain volume in cognitively normal older adults with elevated and sub-threshold levels of cerebral amyloid as measured by amyloid PET imaging. Methods and Findings: This 52-week randomized controlled trial compared the effects of 150 minutes per week of aerobic exercise vs. education control intervention. A total of 117 older adults (mean age 72.9 [7.7]) without evidence of cognitive impairment, with elevated (n=79) or subthreshold (n=38) levels of cerebral amyloid were randomized, and 110 participants completed the study. Exercise was conducted with supervision and monitoring by trained exercise specialists. We conducted 18F-AV45 PET imaging of cerebral amyloid and anatomical MRI for whole brain and hippocampal volume at baseline and Week 52 follow-up to index brain health. Neuropsychological tests were conducted at baseline, Week 26, and Week 52 to assess executive function, verbal memory, and visuospatial cognitive domains. Cardiorespiratory fitness testing was performed at baseline and Week 52 to assess response to exercise. The aerobic exercise group significantly improved cardiorespiratory fitness (11% vs. 1% in the control group) but there were no differences in change measures of amyloid, brain volume, or cognitive performance compared to control. Conclusions: Aerobic exercise was not associated with reduced amyloid accumulation in cognitively normal older adults with cerebral amyloid. In spite of strong systemic cardiorespiratory effects of the intervention, the observed lack of cognitive or brain structure benefits suggests brain benefits of exercise reported in other studies are likely to be related to non-amyloid effects.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244893
Author(s):  
Eric D. Vidoni ◽  
Jill K. Morris ◽  
Amber Watts ◽  
Mark Perry ◽  
Jon Clutton ◽  
...  

Background Our goal was to investigate the role of physical exercise to protect brain health as we age, including the potential to mitigate Alzheimer’s-related pathology. We assessed the effect of 52 weeks of a supervised aerobic exercise program on amyloid accumulation, cognitive performance, and brain volume in cognitively normal older adults with elevated and sub-threshold levels of cerebral amyloid as measured by amyloid PET imaging. Methods and findings This 52-week randomized controlled trial compared the effects of 150 minutes per week of aerobic exercise vs. education control intervention. A total of 117 underactive older adults (mean age 72.9 [7.7]) without evidence of cognitive impairment, with elevated (n = 79) or subthreshold (n = 38) levels of cerebral amyloid were randomized, and 110 participants completed the study. Exercise was conducted with supervision and monitoring by trained exercise specialists. We conducted 18F-AV45 PET imaging of cerebral amyloid and anatomical MRI for whole brain and hippocampal volume at baseline and Week 52 follow-up to index brain health. Neuropsychological tests were conducted at baseline, Week 26, and Week 52 to assess executive function, verbal memory, and visuospatial cognitive domains. Cardiorespiratory fitness testing was performed at baseline and Week 52 to assess response to exercise. The aerobic exercise group significantly improved cardiorespiratory fitness (11% vs. 1% in the control group) but there were no differences in change measures of amyloid, brain volume, or cognitive performance compared to control. Conclusions Aerobic exercise was not associated with reduced amyloid accumulation in cognitively normal older adults with cerebral amyloid. In spite of strong systemic cardiorespiratory effects of the intervention, the observed lack of cognitive or brain structure benefits suggests brain benefits of exercise reported in other studies are likely to be related to non-amyloid effects. Trial registration NCT02000583; ClinicalTrials.gov.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dereck Salisbury ◽  
Tom Plocher ◽  
Fang Yu

Abstract Background Subjective cognitive decline (SCD) is an early manifestation of Alzheimer’s disease (AD) and offers a therapeutic window where interventions have strong potential to prevent or delay the progression of AD. Aerobic exercise and cognitive training represent two promising interventions for AD prevention, but their synergistic effect has yet to be assessed in persons with SCD. Methods/design The purpose of this single-blinded, 3-parallel group randomized controlled trial is to test the synergistic efficacy of an exergame intervention (simultaneous moderate-intensity aerobic cycling and cognitive training) on cognition and aerobic fitness in community-dwelling older adults with SCD. The Exergames Study will randomize 96 participants on a 2:1:1 allocation ratio to 3-month exergame, cycling only, or attention control (stretching). Primary outcomes include global cognition and aerobic fitness, which will be assessed at baseline and after 3 months. The specific aims of the Exergames Study are to (1) determine the efficacy of the exergame in older adults with SCD and (2) assess the distraction effect of exergame on aerobic fitness. Data will be analyzed using ANOVA following intention-to-treat. Discussion This study will test the synergistic effects of exergame on cognition and aerobic fitness. It has the potential to advance prevention research for AD by providing effect-size estimates for future trials. Trial registration ClinicalTrials.gov NCT04311736. Registered on 17 March 2020.


Sign in / Sign up

Export Citation Format

Share Document