A TEMPERATURE SENSITIVE CRYSTAL PLASTICITY MODEL FOR THE PREDICTION OF HIGH TEMPERATURE MECHANICAL BEHAVIOUR OF MULTI-PHASE TIAL ALLOY

Author(s):  
M. Umer Ilyas ◽  
M. Rizviul Kabir
Author(s):  
MK Samal

Development of reliable computational models to predict the high temperature deformation behavior of nickel-based superalloys is in the forefront of materials research. These alloys find wide applications in manufacturing of turbine blades and discs of aircraft engines. The microstructure of these alloys consists of the primary γ′-phase, and the secondary and tertiary precipitates (of Ni3Al type) are dispersed as γ′-phases in the gamma matrix. It is computationally expensive to incorporate the explicit finite element model of the γ-γ′ microstructure in a crystal plasticity-based constitutive framework to simulate the response of the polycrystalline microstructure. Existing models in literature do not account for these underlying micro-structural features which are important for simulation of polycrystalline response. The aim of this work is to develop a physically motivated multi-scale approach for simulation of high temperature response of nickel-based superalloys. At the lower length scale, a dislocation density-based crystal plasticity model is developed which simulates the response of various types of microstructures. The microstructures are designed with various shapes and volume fractions of γ′-precipitates. A new model for simulation of the mechanism of anti-phase boundary shearing of the γ′-precipitates, by the matrix dislocations, is developed in this work. The lower scale model is homogenized as a function of various micro-structural parameters, and the homogenized model is used in the next scale of multi-scale simulation. In addition, a new criterion for initiation of micro-twin and a constitutive model for twin strain accumulation are developed. This new micro-twin model along with the homogenized crystal plasticity model has been used to simulate the creep response of a single crystal nickel-based superalloy, and the results have been compared with those of experiment from literature. It was observed that the new model has been able to model the tension–compression asymmetry as observed in single crystal experiments.


Author(s):  
M Li ◽  
PE O'Donoghue ◽  
SB Leen

Welded joints in tempered 9Cr–1Mo operating at elevated temperatures are well known to be prone to premature failure due to cracking in the heat-affected zone. This paper describes a crystal plasticity model to predict the microcrack initiation and evolution in the inter-critical heat-affected zone of 9Cr–1Mo welded steel at elevated temperature. A crystal plasticity finite element model indicates that the micro-cracks of 9Cr–1Mo steel mostly nucleate at prior austenite grain boundaries and boundary clustered regions. Inter-granular and trans-granular microcracking are shown to be the key predicted microdamage mechanisms from the current crystal plasticity model. A small amount of ferrite in the inter-critical heat-affected zone is shown to not only influence the microcrack initiation and evolution, but also significantly accentuate material degradation for a given applied load leading to premature failure at high temperature.


2016 ◽  
Vol 725 ◽  
pp. 243-248
Author(s):  
Yuichi Kimura ◽  
Sho Kujirai ◽  
Ryo Ueta ◽  
Kazuyuki Shizawa

Magnesium alloy with Long-Period Stacking Ordered Structure (LPSO) and α-Mg (ordinary HCP structure) phase is expected for a new structural material due to its excellent mechanical properties. Its materials strengthening arises from the kink band formation in LPSO phase and the grain refinement of α-Mg phase in the vicinity of LPSO phase because of recrystallization. In the present study, a multiscale and multiphysics computation for the dynamic recrystallization in α-Mg phase is carried out by coupling the dislocation-based crystal plasticity model for HCP crystals proposed previously by the authors with the multi-phase field model through dislocation density. In the present model, not only the environmental temperature-dependences of nucleation and nucleus growth but also a pinning effect of boundary migration of recrystallized grain boundary owing to existence and influence of additive elements are newly taken into account. Furthermore, grain size behaviors of recrystallized nuclei are investigated for various volume fractions of additive element and ratios of grain boundary segregation.


2021 ◽  
Author(s):  
Artyom A. Tokarev ◽  
Anton Yu. Yants ◽  
Alexey I. Shveykin ◽  
Nikita S. Kondratiev

Sign in / Sign up

Export Citation Format

Share Document