scholarly journals Improving rule-based classification using Harmony Search

2019 ◽  
Vol 5 ◽  
pp. e188 ◽  
Author(s):  
Hesam Hasanpour ◽  
Ramak Ghavamizadeh Meibodi ◽  
Keivan Navi

Classification and associative rule mining are two substantial areas in data mining. Some scientists attempt to integrate these two field called rule-based classifiers. Rule-based classifiers can play a very important role in applications such as fraud detection, medical diagnosis, etc. Numerous previous studies have shown that this type of classifier achieves a higher classification accuracy than traditional classification algorithms. However, they still suffer from a fundamental limitation. Many rule-based classifiers used various greedy techniques to prune the redundant rules that lead to missing some important rules. Another challenge that must be considered is related to the enormous set of mined rules that result in high processing overhead. The result of these approaches is that the final selected rules may not be the global best rules. These algorithms are not successful at exploiting search space effectively in order to select the best subset of candidate rules. We merged the Apriori algorithm, Harmony Search, and classification-based association rules (CBA) algorithm in order to build a rule-based classifier. We applied a modified version of the Apriori algorithm with multiple minimum support for extracting useful rules for each class in the dataset. Instead of using a large number of candidate rules, binary Harmony Search was utilized for selecting the best subset of rules that appropriate for building a classification model. We applied the proposed method on a seventeen benchmark dataset and compared its result with traditional association rule classification algorithms. The statistical results show that our proposed method outperformed other rule-based approaches.

2019 ◽  
Author(s):  
Hesam Hasanpour ◽  
Ramak Ghavamizadeh Meibodi ◽  
Keivan Navi

Classification and associative rule mining are two substantial areas in data mining. Some scientists attempt to integrate these two field called rule-based classifiers. Rule-based classifiers can play a very important role in applications such as fraud detection, medical diagnosis, and etc. Numerous previous studies have shown that this type of classifiers achieves high classification accuracy than traditional classification algorithms. However, they still suffer from a fundamental limitation. Many rule-based classifiers used various greedy techniques to prune the redundant rules that lead to missing some important rules. Another challenge that must be considered is related to the enormous set of mined rules that result in high processing overhead. The result of these approaches is that the final selected rules may not be the global best rules. These algorithms are not successful at exploiting search space effectively in order to select the best subset of candidate rules. We merged the Apriori algorithm, harmony search, and classification based association rules (CBA) algorithm for building a rule-based classifier. We applied a modified version of the Apriori algorithm with multiple minimum support for extracting useful rules for each class in the dataset. Instead of using a large number of candidate rules, binary harmony search was utilized for selecting the best subset of rules that appropriate for building a classification model. We applied the proposed method on seventeen benchmark dataset and compared its result with traditional association rule classification algorithms. The statistical results show that our proposed method outperformed other rule-based approaches.


2019 ◽  
Author(s):  
Hesam Hasanpour ◽  
Ramak Ghavamizadeh Meibodi ◽  
Keivan Navi

Classification and associative rule mining are two substantial areas in data mining. Some scientists attempt to integrate these two field called rule-based classifiers. Rule-based classifiers can play a very important role in applications such as fraud detection, medical diagnosis, and etc. Numerous previous studies have shown that this type of classifiers achieves high classification accuracy than traditional classification algorithms. However, they still suffer from a fundamental limitation. Many rule-based classifiers used various greedy techniques to prune the redundant rules that lead to missing some important rules. Another challenge that must be considered is related to the enormous set of mined rules that result in high processing overhead. The result of these approaches is that the final selected rules may not be the global best rules. These algorithms are not successful at exploiting search space effectively in order to select the best subset of candidate rules. We merged the Apriori algorithm, harmony search, and classification based association rules (CBA) algorithm for building a rule-based classifier. We applied a modified version of the Apriori algorithm with multiple minimum support for extracting useful rules for each class in the dataset. Instead of using a large number of candidate rules, binary harmony search was utilized for selecting the best subset of rules that appropriate for building a classification model. We applied the proposed method on seventeen benchmark dataset and compared its result with traditional association rule classification algorithms. The statistical results show that our proposed method outperformed other rule-based approaches.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Associative Classification (AC) or Class Association Rule (CAR) mining is a very efficient method for the classification problem. It can build comprehensible classification models in the form of a list of simple IF-THEN classification rules from the available data. In this paper, we present a new, and improved discrete version of the Crow Search Algorithm (CSA) called NDCSA-CAR to mine the Class Association Rules. The goal of this article is to improve the data classification accuracy and the simplicity of classifiers. The authors applied the proposed NDCSA-CAR algorithm on eleven benchmark dataset and compared its result with traditional algorithms and recent well known rule-based classification algorithms. The experimental results show that the proposed algorithm outperformed other rule-based approaches in all evaluated criteria.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 609 ◽  
Author(s):  
Marina Bardamova ◽  
Anton Konev ◽  
Ilya Hodashinsky ◽  
Alexander Shelupanov

This paper concerns several important topics of the Symmetry journal, namely, pattern recognition, computer-aided design, diversity and similarity. We also take advantage of the symmetric and asymmetric structure of a transfer function, which is responsible to map a continuous search space to a binary search space. A new method for design of a fuzzy-rule-based classifier using metaheuristics called Gravitational Search Algorithm (GSA) is discussed. The paper identifies three basic stages of the classifier construction: feature selection, creating of a fuzzy rule base and optimization of the antecedent parameters of rules. At the first stage, several feature subsets are obtained by using the wrapper scheme on the basis of the binary GSA. Creating fuzzy rules is a serious challenge in designing the fuzzy-rule-based classifier in the presence of high-dimensional data. The classifier structure is formed by the rule base generation algorithm by using minimum and maximum feature values. The optimal fuzzy-rule-based parameters are extracted from the training data using the continuous GSA. The classifier performance is tested on real-world KEEL (Knowledge Extraction based on Evolutionary Learning) datasets. The results demonstrate that highly accurate classifiers could be constructed with relatively few fuzzy rules and features.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Associative Classification (AC) or Class Association Rule (CAR) mining is a very efficient method for the classification problem. It can build comprehensible classification models in the form of a list of simple IF-THEN classification rules from the available data. In this paper, we present a new, and improved discrete version of the Crow Search Algorithm (CSA) called NDCSA-CAR to mine the Class Association Rules. The goal of this article is to improve the data classification accuracy and the simplicity of classifiers. The authors applied the proposed NDCSA-CAR algorithm on eleven benchmark dataset and compared its result with traditional algorithms and recent well known rule-based classification algorithms. The experimental results show that the proposed algorithm outperformed other rule-based approaches in all evaluated criteria.


2016 ◽  
Vol 12 (3) ◽  
pp. 38-50 ◽  
Author(s):  
Saroj Kr. Biswas ◽  
Monali Bordoloi ◽  
Heisnam Rohen Singh ◽  
Biswajit Purkayastha

The efficient feature selection for predictive and accurate classification is highly desirable in many application domains. Most of the attempts to neuro-fuzzy classifier lose information to build interpretable neuro-fuzzy classification model. This paper proposes an interpretable neuro-fuzzy classification model with significant features without loss of knowledge, which is an extension of an existing interpretable neuro-fuzzy classification model. The proposed model is designed based on the consideration of feature importance that is determined by frequency of linguistic features. The rules are then made based on important features. Therefore, the knowledge acquired in network can be comprehended to logical rules using only important features. The proposed model finally performs classification task by rule-based approach. The average accuracy calculated by 10-fold cross validation finds that the proposed model can increase performance of the already proven neuro-fuzzy system for classification tasks.


Author(s):  
Prafulla Gupta ◽  
Durga Toshniwal

Classification based on predictive association rules (CPAR) is a kind of association classification methods which combines the advantages of both associative classification and traditional rule-based classification. For rule generation, CPAR is more efficient than traditional rule-based classification because much repeated calculation is avoided and multiple literals can be selected to generate multiple rules simultaneously. CPAR inherits the basic ideas of FOIL (First Order Inductive Learner) algorithm and PRM (Predictive Rule Mining) algorithm in rule generation. It integrates the features of associative classification in predictive rule analysis. In comparison of FOIL, PRM algorithm usually generates more rules. PRM uses concept of lowering weights rather than removing tuple if tuple is satisfied by the rule. The distinction between CPAR and PRM is that instead of choosing only the attribute that displays the best gain on each iteration CPAR may choose a number of attributes if those attributes have gain close to best gain.


2012 ◽  
Vol 50 (1) ◽  
pp. 130-148 ◽  
Author(s):  
Dimitris G. Stavrakoudis ◽  
Georgia N. Galidaki ◽  
Ioannis Z. Gitas ◽  
John B. Theocharis

Sign in / Sign up

Export Citation Format

Share Document