fundamental limitation
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 35)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Karl Zhanghao ◽  
meiqi Li ◽  
Xingye Chen ◽  
Wenhui Liu ◽  
Yiming Wang ◽  
...  

The number of colors that can be used in fluorescence microscopy to image the live-cell anatomy and organelles' interactions is far less than the number of intracellular organelles and compartments. Here, we report that deep convolutional neuronal networks can predict 15 subcellular structures from super-resolution spinning-disk microscopy images using only one dye, one laser excitation, and two detection channels. Comparing to the colocalization images, this method achieves pixel accuracies of over 91.7%, which not only bypasses the fundamental limitation of multi-color imaging but also accelerates the imaging speed by more than one order of magnitude.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 599
Author(s):  
Aldo C. Martinez-Becerril ◽  
Gabriel Bussières ◽  
Davor Curic ◽  
Lambert Giner ◽  
Raphael A. Abrahao ◽  
...  

Incompatible observables underlie pillars of quantum physics such as contextuality and entanglement. The Heisenberg uncertainty principle is a fundamental limitation on the measurement of the product of incompatible observables, a 'joint' measurement. However, recently a method using weak measurement has experimentally demonstrated joint measurement. This method [Lundeen, J. S., and Bamber, C. Phys. Rev. Lett. 108, 070402, 2012] delivers the standard expectation value of the product of observables, even if they are incompatible. A drawback of this method is that it requires coupling each observable to a distinct degree of freedom (DOF), i.e., a disjoint Hilbert space. Typically, this 'read-out' system is an unused internal DOF of the measured particle. Unfortunately, one quickly runs out of internal DOFs, which limits the number of observables and types of measurements one can make. To address this limitation, we propose and experimentally demonstrate a technique to perform a joint weak-measurement of two incompatible observables using only one DOF as a read-out system. We apply our scheme to directly measure the density matrix of photon polarization states.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maria Ermakova ◽  
Hannah Osborn ◽  
Michael Groszmann ◽  
Soumi Bala ◽  
Andrew Bowerman ◽  
...  

A fundamental limitation of photosynthetic carbon fixation is the availability of CO2. In C4 plants, primary carboxylation occurs in mesophyll cytosol, and little is known about the role of CO2 diffusion in facilitating C4 photosynthesis. We have examined the expression, localization, and functional role of selected plasma membrane intrinsic aquaporins (PIPs) from Setaria italica (foxtail millet) and discovered that SiPIP2;7 is CO2-permeable. When ectopically expressed in mesophyll cells of S. viridis (green foxtail), SiPIP2;7 was localized to the plasma membrane and caused no marked changes in leaf biochemistry. Gas-exchange and C18O16O discrimination measurements revealed that targeted expression of SiPIP2;7 enhanced the conductance to CO2 diffusion from the intercellular airspace to the mesophyll cytosol. Our results demonstrate that mesophyll conductance limits C4 photosynthesis at low pCO2 and that SiPIP2;7 is a functional CO2 permeable aquaporin that can improve CO2 diffusion at the airspace/mesophyll interface and enhance C4 photosynthesis.


Games ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 70
Author(s):  
Erik Brockbank ◽  
Edward Vul

In simple dyadic games such as rock, paper, scissors (RPS), people exhibit peculiar sequential dependencies across repeated interactions with a stable opponent. These regularities seem to arise from a mutually adversarial process of trying to outwit their opponent. What underlies this process, and what are its limits? Here, we offer a novel framework for formally describing and quantifying human adversarial reasoning in the rock, paper, scissors game. We first show that this framework enables a precise characterization of the complexity of patterned behaviors that people exhibit themselves, and appear to exploit in others. This combination allows for a quantitative understanding of human opponent modeling abilities. We apply these tools to an experiment in which people played 300 rounds of RPS in stable dyads. We find that although people exhibit very complex move dependencies, they cannot exploit these dependencies in their opponents, indicating a fundamental limitation in people’s capacity for adversarial reasoning. Taken together, the results presented here show how the rock, paper, scissors game allows for precise formalization of human adaptive reasoning abilities.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Heekyeong Park ◽  
Jiyoul Lee ◽  
Gyuchull Han ◽  
AbdulAziz AlMutairi ◽  
Young-Hoon Kim ◽  
...  

AbstractIndirect bandgap of multilayer molybdenum disulfide has been recognized as a major hindrance to high responsivity of MoS2 phototransistors. Here, to overcome this fundamental limitation, we propose a structural engineering of MoS2 via nano-patterning using block copolymer lithography. The fabricated nanoporous MoS2, consisting of periodic hexagonal arrays of hexagon nanoholes, includes abundant edges having a zigzag configuration of atomic columns with molybdenum and sulfur atoms. These exposed zigzag edges are responsible for multiple trap states in the bandgap region, as confirmed by photo-excited charge-collection spectroscopy measurements on multilayer nanoporous MoS2 phototransistors, showing that in-gap states only near the valence band can result in a photogating effect. The effect of nano-patterning is therefore to significantly enhance the responsivity of multilayer nanoporous MoS2 phototransistors, exhibiting an ultra-high photoresponsivity of 622.2 A W−1. Our nano-patterning of MoS2 for photosensing application paves a route to structural engineering of two-dimensional materials for highly sensitive and responsive optoelectronic devices.


2021 ◽  
Author(s):  
Francisco J. Luongo ◽  
Lu Liu ◽  
Chun Lum Andy Ho ◽  
Janis K. Hesse ◽  
Joseph B Wekselblatt ◽  
...  

The rodent visual system has attracted great interest in recent years due to its experimental tractability, but the fundamental mechanisms used by the mouse to represent the visual world remain unclear. In the primate, researchers have argued from both behavioral and neural evidence that a key step in visual representation is "figure-ground segmentation," the delineation of figures as distinct from backgrounds [1-4]. To determine if mice also show behavioral and neural signatures of figure-ground segmentation, we trained mice on a figure-ground segmentation task where figures were defined by gratings and naturalistic textures moving counterphase to the background. Unlike primates, mice were severely limited in their ability to segment figure from ground using the opponent motion cue, with segmentation behavior strongly dependent on the specific carrier pattern. Remarkably, when mice were forced to localize naturalistic patterns defined by opponent motion, they adopted a strategy of brute force memorization of texture patterns. In contrast, primates, including humans, macaques, and mouse lemurs, could readily segment figures independent of carrier pattern using the opponent motion cue. Consistent with mouse behavior, neural responses to the same stimuli recorded in mouse visual areas V1, RL, and LM also did not support texture-invariant segmentation of figures using opponent motion. Modeling revealed that the texture dependence of both the mouse's behavior and neural responses could be explained by a feedforward neural network lacking explicit segmentation capabilities. These findings reveal a fundamental limitation in the ability of mice to segment visual objects compared to primates.


2021 ◽  
Author(s):  
Maria Ermakova ◽  
Hannah Osborn ◽  
Michael Groszmann ◽  
Soumi Bala ◽  
Samantha McGaughey ◽  
...  

AbstractA fundamental limitation of photosynthetic carbon fixation is the availability of CO4. In C4 plants, primary carboxylation occurs in mesophyll cytosol, and little is known about the role of CO2 diffusion in facilitating C4 photosynthesis. We have examined the expression, localization, and functional role of selected plasma membrane intrinsic aquaporins (PIPs) from Setaria italica (foxtail millet) and discovered that SiPIP2;7 is CO2-permeable. When ectopically expressed in mesophyll cells of S. viridis (green foxtail), SiPIP2;7 was localized to the plasma membrane and caused no marked changes in leaf biochemistry. Gas-exchange and C18O16O discrimination measurements revealed that targeted expression of SiPIP2;7 enhanced the conductance to CO2 diffusion from the intercellular airspace to the mesophyll cytosol. Our results demonstrate that mesophyll conductance limits C4 photosynthesis at low pCO2 and that SiPIP2;7 is a functional CO2 permeable aquaporin that can improve CO2 diffusion at the airspace/mesophyll interface and enhance C4 photosynthesis.


2021 ◽  
Author(s):  
Ran Tao ◽  
Bing-Qian Shan ◽  
Hao-Di Sun ◽  
Meng Ding ◽  
Qing-Song Xue ◽  
...  

<p>Surface states—the electronic states emerging as a solid material terminates at a surface—are usually vulnerable to contaminations and defects. This fundamental limitation has prohibited systematic studies of the potential role of surface states in surface reactions and catalysis, especially in more realistic environments. Herein, we use selective hydrogenation of <a>cinnamaldehyde</a> (CAL) on <a>platinum-covered titanium oxide</a> (Pt@P25) as a prototype reaction, and show that the competitive exchange of extra-introduced species (sodium hydroxide and sodium formate) with spontaneously formed weak bound carbonate and bicarbonate anions at Pt NPs can reconstruct the surface states, which directs the preferred adsorption of the conjugated C=O and C=C double bonds of CAL, and consequently, results in highly efficient synthesis of unsaturated alcohol cinnamyl alcohol (COL) and saturated aldehyde hydrocinnamaldehyde (HCAL) with high selectivity of 98.9% and 99.5%, respectively. Our concept of restructured surface states to tune the chemoselectivity of α, β-unsaturated aldehydes triggered by the selective adsorption of alien molecules may lead to new design principles of heterogeneous catalysts, beyond the conventional d-band theory.</p>


2021 ◽  
Author(s):  
Bing-Qian Shan ◽  
Ran Tao ◽  
Kun Zhang

<p>Surface states—the electronic states emerging as a solid material terminates at a surface—are usually vulnerable to contaminations and defects. This fundamental limitation has prohibited systematic studies of the potential role of surface states in surface reactions and catalysis, especially in more realistic environments. Herein, we use selective hydrogenation of <a>cinnamaldehyde</a> (CAL) on <a>platinum-covered titanium oxide</a> (Pt@P25) as a prototype reaction, and show that the competitive exchange of extra-introduced species (sodium hydroxide and sodium formate) with spontaneously formed weak bound carbonate and bicarbonate anions at Pt NPs can reconstruct the surface states, which directs the preferred adsorption of the conjugated C=O and C=C double bonds of CAL, and consequently, results in highly efficient synthesis of unsaturated alcohol cinnamyl alcohol (COL) and saturated aldehyde hydrocinnamaldehyde (HCAL) with high selectivity of 98.9% and 99.5%, respectively. Our concept of restructured surface states to tune the chemoselectivity of α, β-unsaturated aldehydes triggered by the selective adsorption of alien molecules may lead to new design principles of heterogeneous catalysts, beyond the conventional d-band theory.</p>


2021 ◽  
Author(s):  
Bing-Qian Shan ◽  
Ran Tao ◽  
Kun Zhang

<p>Surface states—the electronic states emerging as a solid material terminates at a surface—are usually vulnerable to contaminations and defects. This fundamental limitation has prohibited systematic studies of the potential role of surface states in surface reactions and catalysis, especially in more realistic environments. Herein, we use selective hydrogenation of <a>cinnamaldehyde</a> (CAL) on <a>platinum-covered titanium oxide</a> (Pt@P25) as a prototype reaction, and show that the competitive exchange of extra-introduced species (sodium hydroxide and sodium formate) with spontaneously formed weak bound carbonate and bicarbonate anions at Pt NPs can reconstruct the surface states, which directs the preferred adsorption of the conjugated C=O and C=C double bonds of CAL, and consequently, results in highly efficient synthesis of unsaturated alcohol cinnamyl alcohol (COL) and saturated aldehyde hydrocinnamaldehyde (HCAL) with high selectivity of 98.9% and 99.5%, respectively. Our concept of restructured surface states to tune the chemoselectivity of α, β-unsaturated aldehydes triggered by the selective adsorption of alien molecules may lead to new design principles of heterogeneous catalysts, beyond the conventional d-band theory.</p>


Sign in / Sign up

Export Citation Format

Share Document