scholarly journals Identification of hub genes associated with the pathogenesis of diffuse large B-cell lymphoma subtype one characterized by host response via integrated bioinformatic analyses

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10269
Author(s):  
Lingna Zhou ◽  
Liya Ding ◽  
Yuqi Gong ◽  
Jing Zhao ◽  
Gong Xin ◽  
...  

Background Host response diffuse large B-cell lymphoma (HR DLBCL) shares features of histologically defined T-cell/histiocyte-rich B-cell lymphoma, including fewer genetic abnormalities, frequent splenic and bone marrow involvement, and younger age at presentation. HR DLBCL is inherently less responsive to the standard treatment for DLBCL. Moreover, the mechanism of infiltration of HR DLBCL with preexisting abundant T-cells and dendritic cells is unknown, and their associated underlying immune responses incompletely defined. Here, hub genes and pathogenesis associated with HR DLBCL were explored to reveal molecular mechanisms and treatment targets. Methods Differentially expressed genes were identified in three datasets (GSE25638, GSE44337, GSE56315). The expression profile of the genes in the GSE53786 dataset was used to constructed a co-expression network. Protein-protein interactions analysis in the modules of interest identified candidate hub genes. Then screening of real hub genes was carried out by survival analysis within the GSE53786 and GSE10846 datasets. Expression of hub genes was validated in the Gene expression profiling interactive analysis, Oncomine databases and human tissue specimens. Functional enrichment analysis and Gene set enrichment analysis were utilized to investigate the potential mechanisms. Tumor Immune Estimation Resource and The Cancer Genome Atlas were used to mine the association of the hub gene with tumor immunity, potential upstream regulators were predicted using bioinformatics tools. Results A total of 274 common differentially expressed genes were identified. Within the key module, we identified CXCL10 as a real hub gene. The validation of upregulated expression level of CXCL10 was consistent with our study. CXCL10 might have a regulatory effect on tumor immunity. The predicted miRNA (hsa-mir-6849-3p) and transcription factor (IRF9) might regulate gene expression in the hub module.

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Zijian Liu ◽  
Jingshu Meng ◽  
Xiaoqian Li ◽  
Fang Zhu ◽  
Tao Liu ◽  
...  

There is a significant difference in prognosis between the germinal center B-cell (GCB) and activated B-cell (ABC) subtypes of diffuse large B-cell lymphoma (DLBCL). However, the signaling pathways and driver genes involved in these disparate subtypes are ambiguous. This study integrated three cohort profile datasets, including 250 GCB samples and 250 ABC samples, to elucidate potential candidate hub genes and key pathways involved in these two subtypes. Differentially expressed genes (DEGs) were identified. After Gene Ontology functional enrichment analysis of the DEGs, protein-protein interaction (PPI) network and sub-PPI network analyses were conducted using the STRING database and Cytoscape software. Subsequently, the Oncomine database and the cBioportal online tool were employed to verify the alterations and differential expression of the 8 hub genes (MME, CD44, IRF4, STAT3, IL2RA, ETV6, CCND2, and CFLAR). Gene set enrichment analysis was also employed to identify the intersection of the key pathways (JAK-STAT, FOXO, and NF-κB pathways) validated in the above analyses. These hub genes and key pathways could improve our understanding of the process of tumorigenesis and the underlying molecular events and may be therapeutic targets for the precise treatment of these two subtypes with different prognoses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Selin Merdan ◽  
Kritika Subramanian ◽  
Turgay Ayer ◽  
Johan Van Weyenbergh ◽  
Andres Chang ◽  
...  

AbstractThe clinical risk stratification of diffuse large B-cell lymphoma (DLBCL) relies on the International Prognostic Index (IPI) for the identification of high-risk disease. Recent studies suggest that the immune microenvironment plays a role in treatment response prediction and survival in DLBCL. This study developed a risk prediction model and evaluated the model’s biological implications in association with the estimated profiles of immune infiltration. Gene-expression profiling of 718 patients with DLBCL was done, for which RNA sequencing data and clinical covariates were obtained from Reddy et al. (2017). Using unsupervised and supervised machine learning methods to identify survival-associated gene signatures, a multivariable model of survival was constructed. Tumor-infiltrating immune cell compositions were enumerated using CIBERSORT deconvolution analysis. A four gene-signature-based score was developed that separated patients into high- and low-risk groups. The combination of the gene-expression-based score with the IPI improved the discrimination on the validation and complete sets. The gene signatures were successfully validated with the deconvolution output. Correlating the deconvolution findings with the gene signatures and risk score, CD8+ T-cells and naïve CD4+ T-cells were associated with favorable prognosis. By analyzing the gene-expression data with a systematic approach, a risk prediction model that outperforms the existing risk assessment methods was developed and validated.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250013
Author(s):  
Chia-Hsin Hsu ◽  
Hirotaka Tomiyasu ◽  
Chi-Hsun Liao ◽  
Chen-Si Lin

Doxorubicin resistance is a major challenge in the successful treatment of canine diffuse large B-cell lymphoma (cDLBCL). In the present study, MethylCap-seq and RNA-seq were performed to characterize the genome-wide DNA methylation and differential gene expression patterns respectively in CLBL-1 8.0, a doxorubicin-resistant cDLBCL cell line, and in CLBL-1 as control, to investigate the underlying mechanisms of doxorubicin resistance in cDLBCL. A total of 20289 hypermethylated differentially methylated regions (DMRs) were detected. Among these, 1339 hypermethylated DMRs were in promoter regions, of which 24 genes showed an inverse correlation between methylation and gene expression. These 24 genes were involved in cell migration, according to gene ontology (GO) analysis. Also, 12855 hypermethylated DMRs were in gene-body regions. Among these, 353 genes showed a positive correlation between methylation and gene expression. Functional analysis of these 353 genes highlighted that TGF-β and lysosome-mediated signal pathways are significantly associated with the drug resistance of CLBL-1. The tumorigenic role of TGF-β signaling pathway in CLBL-1 8.0 was further validated by treating the cells with a TGF-β inhibitor(s) to show the increased chemo-sensitivity and intracellular doxorubicin accumulation, as well as decreased p-glycoprotein expression. In summary, the present study performed an integrative analysis of DNA methylation and gene expression in CLBL-1 8.0 and CLBL-1. The candidate genes and pathways identified in this study hold potential promise for overcoming doxorubicin resistance in cDLBCL.


2021 ◽  
Author(s):  
Shidai Mu ◽  
Deyao Shi ◽  
Lisha Ai ◽  
Fengjuan Fan ◽  
Fei Peng ◽  
...  

AbstractBackgroundAn enhanced International Prognostic Index (NCCN-IPI) was built to better discriminate diffuse large B-cell lymphoma (DLBCL) patients in the rituximab era. However, there is an urgent need to identify novel valuable biomarkers in the context of targeted therapies, such as immune checkpoint blockade (ICB) therapy.MethodsGene expression data and clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. 73 immune-related hub genes in DLBCL patients with different IPI levels were identified by weighted gene co-expression network analysis (WGCNA), and 4 genes were selected to construct an IPI-based immune-related prognostic model (IPI-IPM). Afterward, the genetic, somatic mutational and molecular profiles of IPI-IPM subgroups were analyzed, as well as the potential clinical response of ICB in different IPI-IPM subgroups.ResultsThe IPI-IPM was constructed base on the expression of LCN2, CD5L, NLRP11 and SERPINB2, where high-risk patients had shorter overall survival (OS) than low-risk patients, consistent with the results in the GEO cohorts. The comprehensive results showed that a high IPI-IPM risk score was correlated with immune-related signaling pathways, high KMT2D and CD79B mutation rates, high infiltration of CD8+ T cells and macrophages (M1, M2), as well as up-regulation of inhibitory immune checkpoints including PD-L1, LAG3 and BTLA, indicating more potential response to ICB therapy.ConclusionThe IPI-IPM has independent prognostic significance for DLBCL patients, which provides an immunological perspective to elucidate the mechanisms on tumor progression and drug resistance, also sheds a light on developing immunotherapy for DLBCL.


Sign in / Sign up

Export Citation Format

Share Document