scholarly journals Dynamics in benthic community composition and influencing factors in an upwelling-exposed coral reef on the Pacific coast of Costa Rica

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1434 ◽  
Author(s):  
Ines Stuhldreier ◽  
Celeste Sánchez-Noguera ◽  
Florian Roth ◽  
Carlos Jiménez ◽  
Tim Rixen ◽  
...  

Seasonal upwelling at the northern Pacific coast of Costa Rica offers the opportunity to investigate the effects of pronounced changes in key water parameters on fine-scale dynamics of local coral reef communities. This study monitored benthic community composition at Matapalo reef (10.539°N, 85.766°W) by weekly observations of permanent benthic quadrats from April 2013 to April 2014. Monitoring was accompanied by surveys of herbivore abundance and biomass and measurements of water temperature and inorganic nutrient concentrations. Findings revealed that the reef-building coralsPocilloporaspp. exhibited an exceptional rapid increase from 22 to 51% relative benthic cover. By contrast, turf algae cover decreased from 63 to 24%, resulting in a corresponding increase in crustose coralline algae cover. The macroalgaCaulerpa sertularioidescovered up to 15% of the reef in April 2013, disappeared after synchronized gamete release in May, and subsequently exhibited slow regrowth. Parallel monitoring of influencing factors suggest thatC. sertularioidescover was mainly regulated by their reproductive cycle, while that of turf algae was likely controlled by high abundances of herbivores. Upwelling events in February and March 2014 decreased mean daily seawater temperatures by up to 7 °C and increased nutrient concentrations up to 5- (phosphate) and 16-fold (nitrate) compared to mean values during the rest of the year. Changes in benthic community composition did not appear to correspond to the strong environmental changes, but rather shifted from turf algae to hard coral dominance over the entire year of observation. The exceptional high dynamic over the annual observation period encourages further research on the adaptation potential of coral reefs to environmental variability.

2020 ◽  
Vol 63 (5) ◽  
pp. 429-438
Author(s):  
Jimena Samper-Villarreal ◽  
Jorge Cortés

AbstractSeagrass conservation and management requires scientific understanding of spatial and temporal variability, information that is currently limited for the Eastern Tropical Pacific (ETP). Here, we analysed seagrass presence based on previous reports, herbarium collections and stakeholder knowledge, combined with field characterization in Golfo Dulce, southern Pacific coast of Costa Rica. Seagrasses were found at multiple locations along a narrow border close to shore and in up to 6 m depth within Golfo Dulce, dating back to 1969. Two seagrass species were found, Halophila baillonii and Halodule beaudettei. Seagrass biomass values for Golfo Dulce (12.0 ± 8.5 g DW m−2) were lower and water nutrient concentrations were higher than previously reported in the gulf. Shoot density (1513 ± 767 shoots m−2) was similar to previous reports. Stable isotope values in seagrass were −11.3 ± 1.0‰ δ13C and 1.2 ± 0.9‰ δ15N; while those in sediments were −26.1 ± 1.3 and 2.5 ± 0.9‰. In Golfo Dulce, isotopic values of both seagrass species do not overlap with other known primary producers. Management strategies should aim to minimize known seagrass stressors, protect potential seagrass habitat, and take into account the dynamic life strategies of the two seagrass species found.


Coral Reefs ◽  
2018 ◽  
Vol 37 (4) ◽  
pp. 1157-1168 ◽  
Author(s):  
James P. W. Robinson ◽  
Ivor D. Williams ◽  
Lauren A. Yeager ◽  
Jana M. McPherson ◽  
Jeanette Clark ◽  
...  

2021 ◽  
Author(s):  
◽  
Franziska Elmer

<p>Coral recruitment and calcium carbonate (CaCO₃) accretion are fundamental processes that help maintain coral reefs. Many reefs worldwide have experienced degradation, including a decrease in coral cover and biodiversity. Successful coral recruitment helps degraded reefs to recover, while CaCO₃ accretion by early successional benthic organisms maintains the topographic complexity of a coral reef system. It is therefore important to understand the processes that affect coral recruitment and CaCO₃ accretion rates in order to understand how coral reefs recover from disturbances.  The aim of this thesis was to determine how biophysical forcing factors affect coral recruitment, calcification and bioerosion on a pristine coral reef. I used artificial settlement tiles to measure coral recruitment and CaCO₃ accretion at ten sites (four on the fore reef, four on the Western Reef Terrace and two at the Entrance Channel) at Palmyra Atoll. Fungia skeletons and pieces of dead coral rock were used to measure bioerosion rates, which were combined with the CaCO₃ accretion rates to obtain a net CaCO₃ budget of the reef substratum. Interactions between coral recruits and other benthic organisms on the settlement tiles were recorded to determine the settlement preferences and competitive strength of coral recruits. The settlement preference of Pocillopora damicornis for divots shaped like steephead and bumphead parrotfish bites marks was determined by adding P. damicornis larvae to a container with a settlement tile with the aforementioned divots.  I found that coral recruitment and CaCO₃ accretion are influenced by biophysical forcing factors. Most pocilloporids likely recruit close to their parents while the origin of poritid larvae is much more distant. Pocilloporid recruitment rates were also significantly correlated with the successional stage of the benthic community on the settlement tiles, especially the cover of biofilm and bryozoa. Biofilm and crustose coralline algae (CCA) were preferred as settlement substrata by coral larvae, however both pocilloporids and poritids settled on a large number of different benthic substrata. P. damicornis larvae showed a significant settlement preference for divots shaped like parrotfish bite marks over a flat settlement surface. Coral recruits were good competitors against encrusting algae but were often outcompeted by filamentous and upright algae. Settlement tiles were almost entirely colonised by benthic organisms within three to twelve months of deployment. The mass of CaCO₃ deposited onto the settlement tiles negatively correlated with herbivore grazing pressure on the benthic community. Bioerosion rates within pieces of coral (internal bioerosion) increased over time but overall bioerosion rates (internal and external) rarely exceeded CaCO₃ deposition by CCA.  My results show how variability in biophysical forcing factors leads to natural variation in coral recruitment and CaCO₃ accretion. This thesis highlights the importance of measuring herbivore grazing, CCA and turf algae cover to gain a better understanding of reef resilience. I conclude that models constructed for Caribbean reefs may not be suited to predict resilience in Pacific reefs and that within the Pacific, two different kinds of resilience models need to be constructed, one for human-inhabited coral reefs and one for uninhabited coral reefs.</p>


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Gustavo Arias-Godínez ◽  
Carlos Jiménez ◽  
Carlos Gamboa ◽  
Jorge Cortés ◽  
Mario Espinoza ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chris Roelfsema ◽  
Eva M. Kovacs ◽  
Kathryn Markey ◽  
Julie Vercelloni ◽  
Alberto Rodriguez-Ramirez ◽  
...  

AbstractThis paper describes benthic coral reef community composition point-based field data sets derived from georeferenced photoquadrats using machine learning. Annually over a 17 year period (2002–2018), data were collected using downward-looking photoquadrats that capture an approximately 1 m2 footprint along 100 m–1500 m transect surveys distributed along the reef slope and across the reef flat of Heron Reef (28 km2), Southern Great Barrier Reef, Australia. Benthic community composition for the photoquadrats was automatically interpreted through deep learning, following initial manual calibration of the algorithm. The resulting data sets support understanding of coral reef biology, ecology, mapping and dynamics. Similar methods to derive the benthic data have been published for seagrass habitats, however here we have adapted the methods for application to coral reef habitats, with the integration of automatic photoquadrat analysis. The approach presented is globally applicable for various submerged and benthic community ecological applications, and provides the basis for further studies at this site, regional to global comparative studies, and for the design of similar monitoring programs elsewhere.


2021 ◽  
Author(s):  
◽  
Franziska Elmer

<p>Coral recruitment and calcium carbonate (CaCO₃) accretion are fundamental processes that help maintain coral reefs. Many reefs worldwide have experienced degradation, including a decrease in coral cover and biodiversity. Successful coral recruitment helps degraded reefs to recover, while CaCO₃ accretion by early successional benthic organisms maintains the topographic complexity of a coral reef system. It is therefore important to understand the processes that affect coral recruitment and CaCO₃ accretion rates in order to understand how coral reefs recover from disturbances.  The aim of this thesis was to determine how biophysical forcing factors affect coral recruitment, calcification and bioerosion on a pristine coral reef. I used artificial settlement tiles to measure coral recruitment and CaCO₃ accretion at ten sites (four on the fore reef, four on the Western Reef Terrace and two at the Entrance Channel) at Palmyra Atoll. Fungia skeletons and pieces of dead coral rock were used to measure bioerosion rates, which were combined with the CaCO₃ accretion rates to obtain a net CaCO₃ budget of the reef substratum. Interactions between coral recruits and other benthic organisms on the settlement tiles were recorded to determine the settlement preferences and competitive strength of coral recruits. The settlement preference of Pocillopora damicornis for divots shaped like steephead and bumphead parrotfish bites marks was determined by adding P. damicornis larvae to a container with a settlement tile with the aforementioned divots.  I found that coral recruitment and CaCO₃ accretion are influenced by biophysical forcing factors. Most pocilloporids likely recruit close to their parents while the origin of poritid larvae is much more distant. Pocilloporid recruitment rates were also significantly correlated with the successional stage of the benthic community on the settlement tiles, especially the cover of biofilm and bryozoa. Biofilm and crustose coralline algae (CCA) were preferred as settlement substrata by coral larvae, however both pocilloporids and poritids settled on a large number of different benthic substrata. P. damicornis larvae showed a significant settlement preference for divots shaped like parrotfish bite marks over a flat settlement surface. Coral recruits were good competitors against encrusting algae but were often outcompeted by filamentous and upright algae. Settlement tiles were almost entirely colonised by benthic organisms within three to twelve months of deployment. The mass of CaCO₃ deposited onto the settlement tiles negatively correlated with herbivore grazing pressure on the benthic community. Bioerosion rates within pieces of coral (internal bioerosion) increased over time but overall bioerosion rates (internal and external) rarely exceeded CaCO₃ deposition by CCA.  My results show how variability in biophysical forcing factors leads to natural variation in coral recruitment and CaCO₃ accretion. This thesis highlights the importance of measuring herbivore grazing, CCA and turf algae cover to gain a better understanding of reef resilience. I conclude that models constructed for Caribbean reefs may not be suited to predict resilience in Pacific reefs and that within the Pacific, two different kinds of resilience models need to be constructed, one for human-inhabited coral reefs and one for uninhabited coral reefs.</p>


Sign in / Sign up

Export Citation Format

Share Document