scholarly journals Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2402 ◽  
Author(s):  
Kyle Dexter ◽  
Jérôme Chave

Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin.

2016 ◽  
Author(s):  
Kyle Dexter ◽  
Jérôme Chave

Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to analyse evolutionary patterns of range size, abundance, and species richness. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics, i.e. closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species, while mean range size and abundance are significantly, positively correlated. These correlations are stronger in the raw data, but still significant when using phylogenetically independent contrasts. We suggest that tree stature and/or other phylogenetically related biological traits underlie these results. Lineages comprised of small-statured trees show greater species richness and smaller range sizes and abundances. Lastly, the phylogenetic signal that we evidence for range size suggests that should many small ranged species go extinct, greater phylogenetic diversity may be lost than expected if range size were distributed randomly across the phylogeny.


2016 ◽  
Author(s):  
Kyle Dexter ◽  
Jérôme Chave

Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to analyse evolutionary patterns of range size, abundance, and species richness. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics, i.e. closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species, while mean range size and abundance are significantly, positively correlated. These correlations are stronger in the raw data, but still significant when using phylogenetically independent contrasts. We suggest that tree stature and/or other phylogenetically related biological traits underlie these results. Lineages comprised of small-statured trees show greater species richness and smaller range sizes and abundances. Lastly, the phylogenetic signal that we evidence for range size suggests that should many small ranged species go extinct, greater phylogenetic diversity may be lost than expected if range size were distributed randomly across the phylogeny.


2012 ◽  
Vol 60 (1) ◽  
pp. 46 ◽  
Author(s):  
Jenny Sprent ◽  
Stewart C. Nicol

The size of an animal’s home range is strongly influenced by the resources available within it. In productive, resource-rich habitats sufficient resources are obtainable within a smaller area, and for many species, home ranges are smaller in resource-rich habitats than in habitats with lower resource abundance. Location data on 14 male and 27 female echidnas (Tachyglossus aculeatus) fitted with tracking transmitters, in the southern midlands of Tasmania, were used to test the influence of habitat type on home-range size. We hypothesised that as woodland should offer more shelter, food resources and refuges than pasture, echidnas living in woodland would have smaller home ranges than those living in pasture areas. We found significant differences between the sexes. Male echidnas had a significantly larger mean home range than females and a quite different relationship between home-range size and habitat type from females. There was no relationship between the proportion of woodland within male home ranges and home-range size whereas female echidnas had a highly significant negative relationship. This suggests that home-range size of female echidnas is highly influenced by the amount of woodland within it, but the home-range size of male echidnas is controlled by factors other than habitat. This pattern is consistent with the spatial ecology of many other solitary species with a promiscuous mating system. The home ranges of females are scaled to encompass all necessary resources for successfully raising their young within a minimal area, whilst the large home ranges of males are scaled to maximise access to females.


The Auk ◽  
2019 ◽  
Vol 136 (2) ◽  
Author(s):  
Liam R Mitchell ◽  
Lauryn Benedict ◽  
Jakica Cavar ◽  
Nadje Najar ◽  
David M Logue

Abstract Vocal duets occur when 2 individuals vocalize in temporal coordination. In birds, duet participation functions to cooperatively defend shared resources, localize mates, and in some species, guard the mate. Previous work indicates that duetting tends to co-evolve with a non-migratory lifestyle, probably because the absence of migration facilitates greater cooperation between mates. We examined the evolution of duetting and migration in New World warblers (Parulidae), a group that has been largely ignored by duetting research. Of the 95 species in our analysis, we found evidence of duetting in 19 (20%) species, and evidence of migration in 45 (47.4%) species. Ancestral character reconstruction indicated that the last common ancestor of the New World warblers did not duet. Duetting evolved multiple times in this group, including 2 early origins and several more recent origins. Migration was present in the last common ancestor and was lost several times. Both duetting and migration exhibit phylogenetic signal. A phylogenetically explicit correlation analysis revealed a significant negative relationship between duetting and migration, in keeping with findings from other avian taxa. This study, the first description of the evolution of duetting in a large avian family with a temperate-zone origin, supports the hypothesis that duetting co-evolves with a sedentary natural history in birds.


Diversity ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 96
Author(s):  
Yao Chi ◽  
Jiechen Wang ◽  
Changbai Xi ◽  
Tianlu Qian ◽  
Caiying Sheng

We describe large-scale patterns of terrestrial mammal distribution in China by using geographical information system (GIS) spatial analysis. Mammal taxa, examined by species, family, and order, were binned into 10 km × 10 km grids to explore the relationship between their spatial distribution and geographical factors potentially affecting the same. The spatial pattern of species richness revealed four agglomerations: high richness in the south, low in north, and two low richness areas in eastern and western China. Species richness patterns in Carnivora was the most similar to overall terrestrial mammals’ richness; however, species richness in different orders exhibited distributions distinct from the overall pattern. We found a negative relationship between richness and latitude gradient. Species richness was most strongly correlated with forested ecosystems, and was found to be higher at an elevation of 2000~2200 m, with greater altitudinal variation indicative of higher species richness.


Sign in / Sign up

Export Citation Format

Share Document