scholarly journals The use of gene interaction networks to improve the identification of cancer driver genes

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2568 ◽  
Author(s):  
Emilie Ramsahai ◽  
Kheston Walkins ◽  
Vrijesh Tripathi ◽  
Melford John

Bioinformaticians have implemented different strategies to distinguish cancer driver genes from passenger genes. One of the more recent advances uses a pathway-oriented approach. Methods that employ this strategy are highly dependent on the quality and size of the pathway interaction network employed, and require a powerful statistical environment for analyses. A number of genomic libraries are available in R. DriverNet and DawnRank employ pathway-based methods that use gene interaction graphs in matrix form. We investigated the benefit of combining data from 3 different sources on the prediction outcome of cancer driver genes by DriverNet and DawnRank. An enriched dataset was derived comprising 13,862 genes with 372,250 interactions, which increased its accuracy by 17% and 28%, respectively, compared to their original networks. The study identified 33 new candidate driver genes. Our study highlights the potential of combining networks and weighting edges to provide greater accuracy in the identification of cancer driver genes.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fei Xie ◽  
Jianing Xi ◽  
Qun Duan

The aberrations of a gene can influence it and the functions of its neighbour genes in gene interaction network, leading to the development of carcinogenesis of normal cells. In consideration of gene interaction network as a complex network, previous studies have made efforts on the driver attribute filling of genes via network properties of nodes and network propagation of mutations. However, there are still obstacles from problems of small size of cancer samples and the existence of drivers without property of network neighbours, limiting the discovery of cancer driver genes. To address these obstacles, we propose an efficient modularity subspace based concept learning model. Our model can overcome the curse of dimensionality due to small samples via dimension reduction in the task of attribute concept learning and explore the features of genes through modularity subspace beyond the network neighbours. The evaluation analysis also demonstrates the superiority of our model in the task of driver attribute filling on two gene interaction networks. Generally, our model shows a promising prospect in the application of interaction network analysis of tumorigenesis.


Author(s):  
Jun Wang ◽  
Ziying Yang ◽  
Carlotta Domeniconi ◽  
Xiangliang Zhang ◽  
Guoxian Yu

Abstract Discovering driver pathways is an essential step to uncover the molecular mechanism underlying cancer and to explore precise treatments for cancer patients. However, due to the difficulties of mapping genes to pathways and the limited knowledge about pathway interactions, most previous work focus on identifying individual pathways. In practice, two (or even more) pathways interplay and often cooperatively trigger cancer. In this study, we proposed a new approach called CDPathway to discover cooperative driver pathways. First, CDPathway introduces a driver impact quantification function to quantify the driver weight of each gene. CDPathway assumes that genes with larger weights contribute more to the occurrence of the target disease and identifies them as candidate driver genes. Next, it constructs a heterogeneous network composed of genes, miRNAs and pathways nodes based on the known intra(inter)-relations between them and assigns the quantified driver weights to gene–pathway and gene–miRNA relational edges. To transfer driver impacts of genes to pathway interaction pairs, CDPathway collaboratively factorizes the weighted adjacency matrices of the heterogeneous network to explore the latent relations between genes, miRNAs and pathways. After this, it reconstructs the pathway interaction network and identifies the pathway pairs with maximal interactive and driver weights as cooperative driver pathways. Experimental results on the breast, uterine corpus endometrial carcinoma and ovarian cancer data from The Cancer Genome Atlas show that CDPathway can effectively identify candidate driver genes [area under the receiver operating characteristic curve (AUROC) of $\geq $0.9] and reconstruct the pathway interaction network (AUROC of>0.9), and it uncovers much more known (potential) driver genes than other competitive methods. In addition, CDPathway identifies 150% more driver pathways and 60% more potential cooperative driver pathways than the competing methods. The code of CDPathway is available at http://mlda.swu.edu.cn/codes.php?name=CDPathway.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 67
Author(s):  
Emilie Ann Ramsahai ◽  
Vrijesh Tripathi ◽  
Melford John

Background: The DREAM Challenge evaluated methods to identify molecular pathways facilitating the detection of multiple genes affecting critical interactions and processes. Dysregulation of pathways by well-known driver genes is often found in the development and progression of cancer. We used the gene interaction networks provided and the scoring rounds to test disease module identification methods to nominate candidate driver genes in these modules. Method: Our algorithm calculated the proportion of the whole network accessible in two steps from each node in a combined network, which was defined as a 2-reach gene value. Genes with high 2-reach values were used to form the center of star cover clusters. These clusters were assessed for significant modules. Within these modules we identified novel candidate driver genes, by considering the parent-child relationship of well-known driver genes. Disturbance to such driver genes or their upstream parents, can lead to disruption of highly regulated signals affecting the normal functions of cells. We explored these parents as a potential source for candidate driver genes. Results:  An initial list of 57 candidate driver genes was identified from 13 significant modules. Analysis of the parent-child relationships of well-known driver genes in these modules prioritized PRKDC, YWHAB, GSK3B, and PPP1CB. Conclusion: Our method incorporated the simple m-reach topology metric in disease module identification and its relationship with known driver genes to identify candidate genes. The four genes shortlisted have been highlighted in recent publications in the literature, which supports the need for further wet lab experimental investigation.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Seyed Mohammad Razavi ◽  
Farzaneh Rami ◽  
Seyede Houri Razavi ◽  
Changiz Eslahchi

Abstract Nowadays, research has found a strong relationship between genomic status and occurrence of disease. Cancer is one of the most common diseases that leads to a high annual mortality rate worldwide, and the disease’s genetic content remains challenging. Detecting driver genes of different cancers could help in early diagnosis and treatment. In this paper, we proposed TOPDRIVER, a network-based algorithm, to detect cancer driver genes in cancers. An initial network was constructed by integrating four different omic datasets: HPRD, NCBI, KEGG, and GTEx. This integration created a gene similarity profile that provided a comprehensive perspective of gene interaction in each subtype of cancer and allocated weights to the edges of the network. The vertex scores were calculated using a gene-disease association dataset (DisGeNet) and a molecular functional disease similarity. In this step, the genes network was jagged and faced with a zero-one gap problem. A diffusion kernel was implemented to smooth the vertex scores to overcome this problem. Finally, potential driver genes were extracted according to the topology of the network, genes overall biological functions, and their involvement in cancer pathways. TOPDRIVER has been applied to two subtypes of gastric cancer and one subtype of melanoma. The method could nominate a considerable number of well-known driver genes of these cancers and also introduce novel driver genes. NKX3-1, KIDINS220, and RIPK4 have introduced for gastrointestinal cancer, UBA3, UBE2M, and RRAGA for hereditary gastric cancer and CIT for invasive melanoma. Biological evidences represents TOPDRIVER’s efficiency in a subtype-specific manner.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cesim Erten ◽  
Aissa Houdjedj ◽  
Hilal Kazan

Abstract Background Recent cancer genomic studies have generated detailed molecular data on a large number of cancer patients. A key remaining problem in cancer genomics is the identification of driver genes. Results We propose BetweenNet, a computational approach that integrates genomic data with a protein-protein interaction network to identify cancer driver genes. BetweenNet utilizes a measure based on betweenness centrality on patient specific networks to identify the so-called outlier genes that correspond to dysregulated genes for each patient. Setting up the relationship between the mutated genes and the outliers through a bipartite graph, it employs a random-walk process on the graph, which provides the final prioritization of the mutated genes. We compare BetweenNet against state-of-the art cancer gene prioritization methods on lung, breast, and pan-cancer datasets. Conclusions Our evaluations show that BetweenNet is better at recovering known cancer genes based on multiple reference databases. Additionally, we show that the GO terms and the reference pathways enriched in BetweenNet ranked genes and those that are enriched in known cancer genes overlap significantly when compared to the overlaps achieved by the rankings of the alternative methods.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ege Ülgen ◽  
O. Uğur Sezerman

Abstract Background Cancer develops due to “driver” alterations. Numerous approaches exist for predicting cancer drivers from cohort-scale genomics data. However, methods for personalized analysis of driver genes are underdeveloped. In this study, we developed a novel personalized/batch analysis approach for driver gene prioritization utilizing somatic genomics data, called driveR. Results Combining genomics information and prior biological knowledge, driveR accurately prioritizes cancer driver genes via a multi-task learning model. Testing on 28 different datasets, this study demonstrates that driveR performs adequately, achieving a median AUC of 0.684 (range 0.651–0.861) on the 28 batch analysis test datasets, and a median AUC of 0.773 (range 0–1) on the 5157 personalized analysis test samples. Moreover, it outperforms existing approaches, achieving a significantly higher median AUC than all of MutSigCV (Wilcoxon rank-sum test p < 0.001), DriverNet (p < 0.001), OncodriveFML (p < 0.001) and MutPanning (p < 0.001) on batch analysis test datasets, and a significantly higher median AUC than DawnRank (p < 0.001) and PRODIGY (p < 0.001) on personalized analysis datasets. Conclusions This study demonstrates that the proposed method is an accurate and easy-to-utilize approach for prioritizing driver genes in cancer genomes in personalized or batch analyses. driveR is available on CRAN: https://cran.r-project.org/package=driveR.


EBioMedicine ◽  
2018 ◽  
Vol 27 ◽  
pp. 156-166 ◽  
Author(s):  
Magali Champion ◽  
Kevin Brennan ◽  
Tom Croonenborghs ◽  
Andrew J. Gentles ◽  
Nathalie Pochet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document