scholarly journals Mitochondrial complex I deficiency leads to the retardation of early embryonic development in Ndufs4 knockout mice

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3339 ◽  
Author(s):  
Mei Wang ◽  
Ya-Ping Huang ◽  
Han Wu ◽  
Ke Song ◽  
Cong Wan ◽  
...  

Background The NDUFS4 gene encodes an 18-kD subunit of mitochondria complex I, and mutations in this gene lead to the development of a severe neurodegenerative disease called Leigh syndrome (LS) in humans. To investigate the disease phenotypes and molecular mechanisms of Leigh syndrome, the Ndufs4 knockout (KO) mouse has been widely used as a novel animal model. Because the homozygotes cannot survive beyond child-bearing age, whether Ndufs4 and mitochondrial complex I influence early embryonic development remains unknown. In our study, we attempted to investigate embryonic development in Ndufs4 KO mice, which can be regarded as a Leigh disease model and were created through the CRISPR (clustered regularly interspaced short palindromic repeat) and Cas9 (CRISPR associated)-mediated genome editing system. Methods We first designed a single guide RNA (sgRNA) targeting exon 2 of Ndufs4 to delete the NDUFS4 protein in mouse embryos to mimic Leigh syndrome. Then, we described the phenotypes of our mouse model by forced swimming and the open-field test as well as by assessing other behavioral characteristics. Intracytoplasmic sperm injection (ICSI) was performed to obtain KO embryos to test the influence of NDUFS4 deletion on early embryonic development. Results In this study, we first generated Ndufs4 KO mice with physical and behavioral phenotypes similar to Leigh syndrome using the CRISPR/Cas9 system. The low developmental rate of KO embryos that were derived from knockout gametes indicated that the absence of NDUFS4 impaired the development of preimplantation embryos. Discussion In this paper, we first obtained Ndufs4 KO mice that could mimic Leigh syndrome using the CRISPR/Cas9 system. Then, we identified the role of NDUFS4 in early embryonic development, shedding light on its roles in the respiratory chain and fertility. Our model provides a useful tool with which to investigate the function of Ndufs4. Although the pathological mechanisms of the disease need to be discovered, it helps to understand the pathogenesis of NDUFS4 deficiency in mice and its effects on human diseases.

2007 ◽  
Vol 92 (1-2) ◽  
pp. 104-108 ◽  
Author(s):  
Sophie Lebon ◽  
Limor Minai ◽  
Dominique Chretien ◽  
Johanna Corcos ◽  
Valérie Serre ◽  
...  

Reproduction ◽  
2019 ◽  
pp. 115-126
Author(s):  
Ruizhi Deng ◽  
Chengquan Han ◽  
Lu Zhao ◽  
Qing Zhang ◽  
Beifen Yan ◽  
...  

Endogenous retroviruses (ERVs), which are abundant in mammalian genomes, can modulate the expression of nearby genes, and their expression is dynamic and stage-specific during early embryonic development in mice and humans. However, the functions and mechanisms of ERV elements in regulating embryonic development remain unclear. Here, we utilized several methods to determine the contribution of ERVs to the makeup and regulation of transcripts during embryonic genome activation (EGA). We constructed an ERV library and embryo RNA-seq library (IVF_2c and IVF_8c) of goat to serve as our research basis. The GO and KEGG analysis of nearby ERV genes revealed that some ERV elements may be associated with embryonic development. RNA-seq results were consistent with the features of EGA. To obtain the transcripts derived from the ERV sequences, we blasted the ERV sequences with embryonic transcripts and identified three lncRNAs and one mRNA that were highly expressed in IVF-8c rather than in IVF-2c (q-value <0.05). Then, we validated the expression patterns of nine ERV-related transcripts during early developmental stages and knocked down three high-expression transcripts in EGA. The knockdown of lncRNA TCONS_00460156 or mRNA HSD17B11 significantly decreased the developmental rate of IVF embryos. Our findings suggested that some transcripts from ERVs are essential for the early embryonic development of goat, and analyzing the ERV expression profile during goat EGA may help elucidate the molecular mechanisms of ERV in regulating embryonic development.


2017 ◽  
Vol 120 (3) ◽  
pp. 243-246 ◽  
Author(s):  
Fabian Baertling ◽  
Laura Sánchez-Caballero ◽  
Sharita Timal ◽  
Mariël AM van den Brand ◽  
Lock Hock Ngu ◽  
...  

2013 ◽  
Vol 200 (6) ◽  
pp. 807-820 ◽  
Author(s):  
Ke Zhang ◽  
Zhihong Li ◽  
Manish Jaiswal ◽  
Vafa Bayat ◽  
Bo Xiong ◽  
...  

Mitochondrial complex I (CI) is an essential component in energy production through oxidative phosphorylation. Most CI subunits are encoded by nuclear genes, translated in the cytoplasm, and imported into mitochondria. Upon entry, they are embedded into the mitochondrial inner membrane. How these membrane-associated proteins cope with the hydrophilic cytoplasmic environment before import is unknown. In a forward genetic screen to identify genes that cause neurodegeneration, we identified sicily, the Drosophila melanogaster homologue of human C8ORF38, the loss of which causes Leigh syndrome. We show that in the cytoplasm, Sicily preprotein interacts with cytosolic Hsp90 to chaperone the CI subunit, ND42, before mitochondrial import. Loss of Sicily leads to loss of CI proteins and preproteins in both mitochondria and cytoplasm, respectively, and causes a CI deficiency and neurodegeneration. Our data indicate that cytosolic chaperones are required for the subcellular transport of ND42.


2005 ◽  
Vol 62 (4) ◽  
pp. 659 ◽  
Author(s):  
Miguel A. Martín ◽  
Alberto Blázquez ◽  
Luis G. Gutierrez-Solana ◽  
Daniel Fernández-Moreira ◽  
Paz Briones ◽  
...  

2017 ◽  
Vol 25 (11) ◽  
pp. 1273-1277 ◽  
Author(s):  
Fabian Baertling ◽  
Laura Sánchez-Caballero ◽  
Mariël A M van den Brand ◽  
Liesbeth T Wintjes ◽  
Maaike Brink ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document