scholarly journals Landscape metrics as functional traits in plants: perspectives from a glacier foreland

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3552 ◽  
Author(s):  
Tommaso Sitzia ◽  
Matteo Dainese ◽  
Bertil O. Krüsi ◽  
Duncan McCollin

Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species’ patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait-spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data.

2016 ◽  
Author(s):  
Tommaso Sitzia ◽  
Matteo Dainese ◽  
Bertil O. Krüsi ◽  
Duncan McCollin

The main aim of this study was to elucidate the roles of terrain age and spatial self-organisation as drivers of primary succession using high-resolution assessment of plant composition, functional traits and landscape metrics. We sampled 46 plots, 1m x 1m each, distributed along a 15-70 year range of terrain ages on the foreland of the Nardis glacier, located in the southern central Alps of Italy. From existing databases, we selected nine quantitative traits for the 16 plant species present, and we measured a set of seven landscape metrics, which described the spatial arrangement of the plant species patches on the study plots, at a 1cm x 1cm resolution. We applied linear models to study the relationships among plant communities, landscape metrics and terrain age. Furthermore, we used RLQ-analysis to examine trait-spatial configuration relations. To assess the effect of terrain age variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relations between traits, landscape metrics and RLQ axes. Surprisingly, linear models revealed that neither the plant composition nor any of the landscape metrics differed among the three classes of terrain age distinguished, viz. 15-41 y, 41-57 y and 57-66 y, respectively. Further, no correlations were detected between trait patterns and terrain age, however, the floristically defined relevé clusters differed significantly with regard to several landscape metrics and suggestive relationships between increasing patch diversity and traits connected to growth rate were detected. We conclude that (i) terrain age below 70 years is not a good predictor for neither plant composition nor spatial configuration on the studied microhabitat and (ii) the small-scale configuration of the plant species patches correlates with certain functional traits and with plant composition, suggesting species-based spatial self-organisation.


2016 ◽  
Author(s):  
Tommaso Sitzia ◽  
Matteo Dainese ◽  
Bertil O. Krüsi ◽  
Duncan McCollin

The main aim of this study was to elucidate the roles of terrain age and spatial self-organisation as drivers of primary succession using high-resolution assessment of plant composition, functional traits and landscape metrics. We sampled 46 plots, 1m x 1m each, distributed along a 15-70 year range of terrain ages on the foreland of the Nardis glacier, located in the southern central Alps of Italy. From existing databases, we selected nine quantitative traits for the 16 plant species present, and we measured a set of seven landscape metrics, which described the spatial arrangement of the plant species patches on the study plots, at a 1cm x 1cm resolution. We applied linear models to study the relationships among plant communities, landscape metrics and terrain age. Furthermore, we used RLQ-analysis to examine trait-spatial configuration relations. To assess the effect of terrain age variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relations between traits, landscape metrics and RLQ axes. Surprisingly, linear models revealed that neither the plant composition nor any of the landscape metrics differed among the three classes of terrain age distinguished, viz. 15-41 y, 41-57 y and 57-66 y, respectively. Further, no correlations were detected between trait patterns and terrain age, however, the floristically defined relevé clusters differed significantly with regard to several landscape metrics and suggestive relationships between increasing patch diversity and traits connected to growth rate were detected. We conclude that (i) terrain age below 70 years is not a good predictor for neither plant composition nor spatial configuration on the studied microhabitat and (ii) the small-scale configuration of the plant species patches correlates with certain functional traits and with plant composition, suggesting species-based spatial self-organisation.


2020 ◽  
Vol 10 (5) ◽  
pp. 44-48
Author(s):  
M. Noor ◽  
U. Nisar ◽  
K.U.K. Muhhamad

Monotheca buxifolia is an ethnomedicinally and economically important threatened fruit bearing plant species in Malakand Division Pakistan. The genetic diversity among the 92 various genotypes of Monotheca buxifolia was carried out using sodium dodecyl sulfate poly acrylamide gel electrophoresis (SDS-PAGE) method. A considerable amount of inter districts genetic diversity (66.70%) was observed among the genotypes of M. buxifolia. Protein profiling was conducted on 12% gel electrophoresis. A total of 6 protein bands were observed in M. buxifolia genotypes. SDS-PAGE practice is a convenient scheme for the examination of both genetic diversity and relationship. Particularly, L-4 and L-5 were monomorphic in the inter districts Monotheca buxifolia genotypes and was recognized as species specific. The remaining other loci were polymorphic. In this investigation, the high inter and intra- districts specific diversity was observed demonstrating SDS-PAGE is an authoritative procedure for categorizing the genetically diverse germplasms in M. buxifolia. The findings from this study could be useful in the identification and selection of suitable M. buxifolia genotypes for future conservation programmes. Today, there is still a need to examine the genetic diversity and protect genetic resources, in particular wild species, for possible benefits in plant conservation programmes. To the best of our knowledge, this is the first ever report that addresses genetic variability in M. buxifolia.


2021 ◽  
Vol 11 (2) ◽  
pp. 233-240
Author(s):  
Somveer Jakhar ◽  
◽  
Himanshi Dhiman ◽  
Harikesh Saharan ◽  

The functional diversity is an essential concept in the field of ecology. It refers to the relative abundance, range, and value of the functional traits present in a given community or ecosystem. Plant functional traits (leaf traits, stem traits, root traits, etc.) create a link between an ecosystem processes and plant physiology and thus offer a powerful means to study the global change on vegetation dynamics and ecosystem processes. When plant species grown in different environments, their physiological and functional traits get modifed due to changes in site-specific conditions. In the present study, leaf functional traits (leaf size-LS, specific leaf areaSLA, leaf dry matter content-LDMC, leaf nitrogen content-LNC, leaf phosphorus content-LPC and leaf nitrogen to phosphorus ratio-N:P) of twelve dominant understorey species (6 shrubs and 6 herbs) were examined in the Pine forest of Morni Hills range of lower Shivaliks, Haryana, India. During the study, the maximum value of leaf size was obtained for Murraya koenigii and Cynoglossum zeylanicum, while the maximum value of LDMC was obtained for Toxicodendron parviflorum and Dicliptera chinensis among shrubs and herbs respectively. Other than this, highest value of SLA, LPC and LNC were calculated for Parthenium hysterophorus among shrubs and Oxalis corniculata among herbs. The calculated values were also found to be significantly correlated among the selected plant species. The SLA was found to be negatively correlated with, LDMC and LPC whereas positively correlated with LNC and N:P. The present study represents a step forward in the direction of functional ecology performed in the forest ecosystems of Haryana. This study is essential for predicting the patterns of community assembly as well as for describing species contributions to ecosystem processes.


2017 ◽  
Vol 25 (3) ◽  
pp. 143-151 ◽  
Author(s):  
Carlos B. de Araújo ◽  
Paulo A. M. Marques ◽  
Jacques M. E. Vielliard

2011 ◽  
Vol 144 (5) ◽  
pp. 1619-1629 ◽  
Author(s):  
Julien Piqueray ◽  
Emmanuelle Bisteau ◽  
Sara Cristofoli ◽  
Rodolphe Palm ◽  
Peter Poschlod ◽  
...  

Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 460 ◽  
Author(s):  
Vesna Krnjaja ◽  
Slavica Stanković ◽  
Ana Obradović ◽  
Tanja Petrović ◽  
Violeta Mandić ◽  
...  

Fusarium graminearum as the main causal agent of Fusarium head blight (FHB) and its ability to produce trichothecenes was investigated by molecular techniques. A total of 37 strains isolated from the wheat, harvested in Serbia in 2005, 2008 and 2015, and previously designated by morphological observation as F. graminearum, were used for trichothecene genotypes characterization. The strains were identified using the species-specific primer set FG16R/FG16F while genotypic characterization was done using specific TRI13 and TRI3 sequences of the trichothecene gene clusters. The PCR assays identified all strains as species of F. graminearum sensu stricto with the DON/15-ADON genotype. The quantification of the mycotoxin (DON) was performed using the biochemical assay. The high levels of DON (>20,000 µg kg−1) were recorded in all of the strains from 2005, four strains from 2008 and two strains from 2015. Weather data of the investigated seasons, showed that the optimal temperature, frequent rains and high relative humidity (RH) was very favourable for the development of F. graminearum, affecting the DON biosynthesis.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Minwoo Oh ◽  
Yoonjeong Heo ◽  
Eun Ju Lee ◽  
Hyohyemi Lee

Abstract Background As trade increases, the influx of various alien species and their spread to new regions are prevalent, making them a general problem globally. Anthropogenic activities and climate change have led to alien species becoming distributed beyond their native range. As a result, alien species can be easily found anywhere, with the density of individuals varying across locations. The prevalent distribution of alien species adversely affects invaded ecosystems; thus, strategic management plans must be established to control them effectively. To this end, this study evaluated hotspots and cold-spots in the degree of distribution of invasive alien plant species, and major environmental factors related to hot spots were identified. We analyzed 10,287 distribution points of 126 species of alien plant species collected through a national survey of alien species using the hierarchical model of species communities (HMSC) framework. Results The explanatory and fourfold cross-validation predictive power of the model were 0.91 and 0.75 as area under the curve (AUC) values, respectively. Hotspots of invasive plants were found in the Seoul metropolitan area, Daegu metropolitan city, Chungcheongbuk-do Province, southwest shore, and Jeju Island. Hotspots were generally found where the highest maximum summer temperature, winter precipitation, and road density were observed. In contrast, seasonality in temperature, annual temperature range, precipitation during summer, and distance to rivers and the sea were negatively correlated to hotspots. The model showed that functional traits accounted for 55% of the variance explained by environmental factors. Species with a higher specific leaf area were found where temperature seasonality was low. Taller species were associated with a larger annual temperature range. Heavier seed mass was associated with a maximum summer temperature > 29 °C. Conclusions This study showed that hotspots contained 2.1 times more alien plants on average than cold-spots. Hotspots of invasive plants tended to appear under less stressful climate conditions, such as low fluctuations in temperature and precipitation. In addition, disturbance by anthropogenic factors and water flow positively affected hotspots. These results were consistent with previous reports on the ruderal and competitive strategies of invasive plants, not the stress-tolerant strategy. Our results supported that the functional traits of alien plants are closely related to the ecological strategies of plants by shaping the response of species to various environmental filters. Therefore, to control alien plants effectively, the occurrence of disturbed sites where alien plants can grow in large quantities should be minimized, and the waterfront of rivers must be managed.


Sign in / Sign up

Export Citation Format

Share Document