scholarly journals Ornithopod diversity in the Griman Creek Formation (Cenomanian), New South Wales, Australia

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6008 ◽  
Author(s):  
Phil R. Bell ◽  
Matthew C. Herne ◽  
Tom Brougham ◽  
Elizabeth T. Smith

During the Early Cretaceous, dinosaur communities of the Australian-Antarctic rift system (Eumeralla and Wonthaggi formations) cropping out in Victoria were apparently dominated by a diverse small-bodied ‘basal ornithopod’ fauna. Further north, in Queensland (Winton and Mackunda formations), poorly-represented small-bodied ornithopods coexisted with large-bodied iguanodontians. Our understanding of the ornithopod diversity from the region between the Australian-Antarctic rift and Queensland, represented by Lightning Ridge in central-northern New South Wales (Griman Creek Formation), has been superficial. Here, we re-investigate the ornithopod diversity at Lightning Ridge based on new craniodental remains. Our findings indicate a diverse ornithopod fauna consisting of two-to-three small-bodied non-iguanodontian ornithopods (includingWeewarrasaurus pobenigen. et sp. nov.), at least one indeterminate iguanodontian, and a possible ankylopollexian. These results support those of previous studies that favour a general abundance of small-bodied basal ornithopods in Early to mid-Cretaceous high-latitude localities of southeastern Australia. Although these localities are not necessarily time-equivalent, increasing evidence indicates that Lightning Ridge formed a ‘meeting point’ between the basal ornithopod-dominated localities in Victoria and the sauropod-iguanodontian faunas in Queensland to the north.

1996 ◽  
Vol 36 (3) ◽  
pp. 299 ◽  
Author(s):  
TS Andrews ◽  
RDB Whalley ◽  
CE Jones

Inputs and losses from Giant Parramatta grass [GPG, Sporobolus indicus (L.) R. Br. var. major (Buse) Baaijens] soil seed banks were quantified on the North Coast of New South Wales. Monthly potential seed production and actual seed fall was estimated at Valla during 1991-92. Total potential production was >668 000 seeds/m2 for the season, while seed fall was >146000 seeds/m2. Seed fall >10000 seeds/m2.month was recorded from January until May, with further seed falls recorded in June and July. The impact of seed production on seed banks was assessed by estimating seed banks in the seed production quadrats before and after seed fall. Seed banks in 4 of the 6 sites decreased in year 2, although seed numbers at 1 damp site increased markedly. Defoliation from mid-December until February, April or June prevented seed production, reducing seed banks by 34% over 7 months. Seed banks in undefoliated plots increased by 3300 seeds/m2, although seed fall was estimated at >114 000 seeds/m2. Emergence of GPG seedlings from artificially established and naturally occurring, persistent seed banks was recorded for 3 years from bare and vegetated treatment plots. Sown seeds showed high levels of innate dormancy and only 4% of seeds emerged when sown immediately after collection. Longer storage of seeds after collection resulted in more seedlings emerging. Estimates of persistent seed banks ranged from 1650 to about 21260 seeds/m2. Most seedlings emerged in spring or autumn and this was correlated with rainfall but not with ambient temperatures. Rates of seed bank decline in both bare and vegetated treatment plots was estimated by fitting exponential decay curves to seed bank estimates. Assuming no further seed inputs, it was estimated that it would take about 3 and 5 years, respectively, for seed banks to decline to 150 seeds/m2 in bare and vegetated treatments.


Oceania ◽  
1957 ◽  
Vol 27 (3) ◽  
pp. 190-209 ◽  
Author(s):  
Malcolm J. C. Calley

2006 ◽  
Vol 285 (1-2) ◽  
pp. 245-255 ◽  
Author(s):  
M. T. McHenry ◽  
B. R. Wilson ◽  
J. M. Lemon ◽  
D. E. Donnelly ◽  
I. G. Growns

1851 ◽  
Vol 2 ◽  
pp. 239-240
Author(s):  
Thomas Anderson

About thirty years ago a species of manna, obtained from the Eucalyptus Mannifera, was brought from New South Wales, and was examined by Dr Thomas Thomson, and afterwards by Professor Johnston, both of whom ascertained it to contain a new species of sugar, different from the mannite which exists in ordinary manna. The author had, through the kindness of Mr Sheriff Cay, an opportunity of examining a very different species of manna, remarkable both from its chemical constitution, and from its possessing a definitely organised structure. This substance was discovered by Mr Robert Cay in 1844, in the interior of Australia Felix, to the north and north-west of Melbourne, where it occurs at certain seasons on the leaves of the Mallee plant, Eucalyptus Dumosa, and is known to the natives by the name of Lerp.


1997 ◽  
Vol 166 (6) ◽  
pp. 290-293 ◽  
Author(s):  
Tim J Sladden ◽  
Alan R Hickey ◽  
Thérèse M Dunn ◽  
John R Beard

1997 ◽  
Vol 37 (4) ◽  
pp. 439 ◽  
Author(s):  
T. S. Andrews ◽  
C. E. Jones ◽  
R. D. B. Whalley

Summary. Four experiments were conducted to determine the effects of temperature, light and leaf extract solutions on the germination of Giant Parramatta grass [GPG, Sporobolus indicus (L.) R. Br. var. major (Buse) Baaijens] collected from a population on the North Coast of New South Wales. In the first experiment, seeds were subjected to one of a range of temperature combinations immediately after collection and again after 8 and 27 weeks. Germination was restricted to a narrow range of alternating temperatures with a peak at 35°C day/15°C night when seeds were tested immediately after collection. More seeds germinated when the samples had been stored, although germination remained depressed at constant temperatures. These data indicate that freshly collected GPG seeds are subject to primary dormancy and that few would germinate in the field immediately after seed fall. In a second experiment, seeds were buried beneath leaf litter in a pasture immediately after collection. After 7 months, the seeds were exhumed and subjected to either constant (20°C) or alternating (35/15°C) temperatures in either full light, reduced red:far-red (R : FR) light or dark treatments. Over 95% of GPG seeds germinated when subjected to alternating temperatures, regardless of light treatment. At constant temperatures, 97% of seeds germinated under full light, 59% at reduced R : FR light and <1% in dark treatments. A germination response to alternating temperatures and/or light treatments has been reported in pasture weeds and may be an adaptation to detecting gaps in the pasture canopy. Consequently, the germination of GPG in a pasture may be manipulated to some extent by altering the amount of pasture cover using grazing management, mowing and fertiliser applications. In experiment 3, leaves from a range of coastal grasses were mixed with water and the solutions were used to germinate GPG seeds. Solutions extracted from setaria (Setaria sphacelata) leaves completely inhibited GPG germination while 27% of GPG seeds germinated when imbibed with kikuyu leaf extract solution. Solution extracted from carpet grass (Axonopus affinis) leaves had the least effect on GPG germination. In experiment 4, the effects of solutions that had been leached from the leaves of either setaria or carpet grass on seed germination, and root and shoot lengths of GPG seedlings were compared. Germination was less inhibited by leachate solutions compared with the extract solutions used in experiment 3. Seedlings in setaria leachates had significantly shorter roots and shoots than both those germinated in carpet grass leachates and control seedlings. This may explain, at least in part, why carpet-grass-based pastures are readily infested with GPG while setaria-based pastures are relatively resistant to infestation. The potential for allelopathic interactions between GPG and setaria to be fully utilised to reduce the abundance of GPG in coastal New South Wales pastures is discussed.


1971 ◽  
Vol 11 (50) ◽  
pp. 307 ◽  
Author(s):  
GJ Murtagh

The effectiveness of chemical seedbed preparation for sod-sown oats was studied using varying intervals between spraying and sowing. Four herbicides were compared in a second experiment. Both experiments were conducted on paspalum (Paspalum dilatatum) dominant pastures on red basaltic soil on the North Coast of New South Wales. Herbicides were most effective when applied at 6.7 kg acid equivalent a hectare. At this rate, the highest yields of dry matter and nitrogen were obtained when there was a three-week interval and considerably less when there was no interval. A mixture of 2,2-DPA (2,2-dichloropropionic acid) and amitrole (3-amino-1,2,4-triazole) was more effective than 2,2-DPA alone with a three-week spraying interval but there was no difference with a six-week interval. Both amitrole and a mixture of amitrole and ammonium thiocyanate were ineffective for chemical seedbed preparation on paspalum pastures;


Sign in / Sign up

Export Citation Format

Share Document