scholarly journals Genetic diversity increases with depth in red gorgonian populations of the Mediterranean Sea and the Atlantic Ocean

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6794 ◽  
Author(s):  
Joanna Pilczynska ◽  
Silvia Cocito ◽  
Joana Boavida ◽  
Ester A. Serrão ◽  
Jorge Assis ◽  
...  

Background In the ocean, the variability of environmental conditions found along depth gradients exposes populations to contrasting levels of perturbation, which can be reflected in the overall patterns of species genetic diversity. At shallow sites, resource availability may structure large, persistent and well-connected populations with higher levels of diversity. In contrast, the more extreme conditions, such as thermal stress during heat waves, can lead to population bottlenecks and genetic erosion, inverting the natural expectation. Here we examine how genetic diversity varies along depth for a long-lived, important ecosystem-structuring species, the red gorgonian, Paramuricea clavata. Methods We used five polymorphic microsatellite markers to infer differences in genetic diversity and differentiation, and to detect bottleneck signs between shallow and deeper populations across the Atlantic Ocean and the Mediterranean Sea. We further explored the potential relationship between depth and environmental gradients (temperature, ocean currents, productivity and slope) on the observed patterns of diversity by means of generalized linear mixed models. Results An overall pattern of higher genetic diversity was found in the deeper sites of the Atlantic Ocean and the Mediterranean Sea. This pattern was largely explained by bottom temperatures, with a linear pattern of decreasing genetic diversity with increasing thermal stress. Genetic differentiation patterns showed higher gene flow within sites (i.e., shallow vs. deeper populations) than between sites. Recent genetic bottlenecks were found in two populations of shallow depths. Discussion Our results highlight the role of deep refugial populations safeguarding higher and unique genetic diversity for marine structuring species. Theoretical regression modelling demonstrated how thermal stress alone may reduce population sizes and diversity levels of shallow water populations. In fact, the examination of time series on a daily basis showed the upper water masses repeatedly reaching lethal temperatures for P. clavata. Differentiation patterns showed that the deep richer populations are isolated. Gene flow was also inferred across different depths; however, not in sufficient levels to offset the detrimental effects of surface environmental conditions on genetic diversity. The identification of deep isolated areas with high conservation value for the red gorgonian represents an important step in the face of ongoing and future climate changes.

2014 ◽  
Vol 94 (7) ◽  
pp. 1475-1484 ◽  
Author(s):  
J. Micael ◽  
P. Rodrigues ◽  
A.C. Costa ◽  
M.J. Alves

The seastarOphidiaster ophidianusis a vulnerable and protected species in the Mediterranean Sea but is common on North Atlantic islands such as the Azores and Madeira archipelagos. This work presents new insights into the phylogeography and genetic diversity ofO. ophidianusfrom the Azores, based on 67 sequences of the 16S mitochondrial gene and 46 sequences of the nuclear ATP intron 5 gene. Twenty-six samples from the Mediterranean and seven samples from Madeira were used as out-groups. The results revealed that there is a lack of genetic differentiation betweenO. ophidianusfrom the Azores and the out-groups. All, therefore, belong to the same lineage and argue for a fast and recent range expansion of this species into the Azores. Our results also suggest the existence of distinctive periods of strong gene flow followed by periods of either low or non-existent gene flow between the Mediterranean Sea and this archipelago, which could explain the presence of private haplotypes in all studied areas.


2009 ◽  
Vol 66 (9) ◽  
pp. 1478-1490 ◽  
Author(s):  
J. A. Galarza ◽  
G. F. Turner ◽  
E. Macpherson ◽  
C. Rico

The accurate identification of genetic partitioning is of primarily importance when devising conservation management strategies for today’s marine resources. The great variety of genetic structure displayed by demersal species underscores the need for the identification of common patterns that can be found across species. Here, we analyse allele frequency variation at 10 microsatellite loci of two congener demersal fish, the red mullet ( Mullus barbatus ) and the striped red mullet ( Mullus surmuletus ), from the Atlantic Ocean and the Mediterranean Sea. The results indicate that two different gene flow patterns exist between these species. The red mullet’s genetic distribution was found to be highly structured, resembling that of a metapopulation composed by independent, self-recruiting subpopulations with some connections between them. The striped red mullet displayed less genetic heterogeneity within the Mediterranean Sea and a substantial gene flow reduction between the Atlantic Ocean and Mediterranean Sea. Our results indicate that gene flow patterns in the demersal environment can be substantially different between closely related species with highly comparable biology, suggesting that biogeographic boundaries can affect demersal species in a different way despite common ecological features and spatial overlap. We conclude that the delimitation of such boundaries could be determined by the fine differences in life history traits between species.


Author(s):  
Alba Rey-Iglesia ◽  
Philippe Gaubert ◽  
Gonçalo Espregueira Themudo ◽  
Rosa Pires ◽  
Constanza De La Fuente ◽  
...  

Abstract The Mediterranean monk seal Monachus monachus is one of the most threatened marine mammals, with only 600–700 individuals restricted to three populations off the coast of Western Sahara and Madeira (North Atlantic) and between Greece and Turkey (eastern Mediterranean). Its original range was from the Black Sea (eastern Mediterranean) to Gambia (western African coast), but was drastically reduced by commercial hunting and human persecution since the early stages of marine exploitation. We here analyse 42 mitogenomes of Mediterranean monk seals, from across their present and historical geographic ranges to assess the species population dynamics over time. Our data show a decrease in genetic diversity in the last 200 years. Extant individuals presented an almost four-fold reduction in genetic diversity when compared to historical specimens. We also detect, for the first time, a clear segregation between the two North Atlantic populations, Madeira and Cabo Blanco, regardless of their geographical proximity. Moreover, we show the presence of historical gene-flow between the two water basins, the Atlantic Ocean and the Mediterranean Sea, and the presence of at least one extinct maternal lineage in the Mediterranean. Our work demonstrates the advantages of using full mitogenomes in phylogeographic and conservation genomic studies of threatened species.


2014 ◽  
Vol 456 ◽  
pp. 34-40 ◽  
Author(s):  
Ivana Prusina ◽  
Gianluca Sarà ◽  
Maurizio De Pirro ◽  
Yun-Wei Dong ◽  
Guo-Dong Han ◽  
...  

2007 ◽  
Vol 37 (2) ◽  
pp. 338-358 ◽  
Author(s):  
Ichiro Fukumori ◽  
Dimitris Menemenlis ◽  
Tong Lee

Abstract A new basin-wide oscillation of the Mediterranean Sea is identified and analyzed using sea level observations from the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter and a numerical ocean circulation model. More than 50% of the large-scale, nontidal, and non-pressure-driven variance of sea level can be attributed to this oscillation, which is nearly uniform in phase and amplitude across the entire basin. The oscillation has periods ranging from 10 days to several years and has a magnitude as large as 10 cm. The model suggests that the fluctuations are driven by winds at the Strait of Gibraltar and its neighboring region, including the Alboran Sea and a part of the Atlantic Ocean immediately to the west of the strait. Winds in this region force a net mass flux through the Strait of Gibraltar to which the Mediterranean Sea adjusts almost uniformly across its entire basin with depth-independent pressure perturbations. The wind-driven response can be explained in part by wind setup; a near-stationary balance is established between the along-strait wind in this forcing region and the sea level difference between the Mediterranean Sea and the Atlantic Ocean. The amplitude of this basin-wide wind-driven sea level fluctuation is inversely proportional to the setup region’s depth but is insensitive to its width including that of Gibraltar Strait. The wind-driven fluctuation is coherent with atmospheric pressure over the basin and contributes to the apparent deviation of the Mediterranean Sea from an inverse barometer response.


Sign in / Sign up

Export Citation Format

Share Document