scholarly journals Peer Review #2 of "Genetic diversity increases with depth in red gorgonian populations of the Mediterranean Sea and the Atlantic Ocean (v0.2)"

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6794 ◽  
Author(s):  
Joanna Pilczynska ◽  
Silvia Cocito ◽  
Joana Boavida ◽  
Ester A. Serrão ◽  
Jorge Assis ◽  
...  

Background In the ocean, the variability of environmental conditions found along depth gradients exposes populations to contrasting levels of perturbation, which can be reflected in the overall patterns of species genetic diversity. At shallow sites, resource availability may structure large, persistent and well-connected populations with higher levels of diversity. In contrast, the more extreme conditions, such as thermal stress during heat waves, can lead to population bottlenecks and genetic erosion, inverting the natural expectation. Here we examine how genetic diversity varies along depth for a long-lived, important ecosystem-structuring species, the red gorgonian, Paramuricea clavata. Methods We used five polymorphic microsatellite markers to infer differences in genetic diversity and differentiation, and to detect bottleneck signs between shallow and deeper populations across the Atlantic Ocean and the Mediterranean Sea. We further explored the potential relationship between depth and environmental gradients (temperature, ocean currents, productivity and slope) on the observed patterns of diversity by means of generalized linear mixed models. Results An overall pattern of higher genetic diversity was found in the deeper sites of the Atlantic Ocean and the Mediterranean Sea. This pattern was largely explained by bottom temperatures, with a linear pattern of decreasing genetic diversity with increasing thermal stress. Genetic differentiation patterns showed higher gene flow within sites (i.e., shallow vs. deeper populations) than between sites. Recent genetic bottlenecks were found in two populations of shallow depths. Discussion Our results highlight the role of deep refugial populations safeguarding higher and unique genetic diversity for marine structuring species. Theoretical regression modelling demonstrated how thermal stress alone may reduce population sizes and diversity levels of shallow water populations. In fact, the examination of time series on a daily basis showed the upper water masses repeatedly reaching lethal temperatures for P. clavata. Differentiation patterns showed that the deep richer populations are isolated. Gene flow was also inferred across different depths; however, not in sufficient levels to offset the detrimental effects of surface environmental conditions on genetic diversity. The identification of deep isolated areas with high conservation value for the red gorgonian represents an important step in the face of ongoing and future climate changes.


2007 ◽  
Vol 37 (2) ◽  
pp. 338-358 ◽  
Author(s):  
Ichiro Fukumori ◽  
Dimitris Menemenlis ◽  
Tong Lee

Abstract A new basin-wide oscillation of the Mediterranean Sea is identified and analyzed using sea level observations from the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter and a numerical ocean circulation model. More than 50% of the large-scale, nontidal, and non-pressure-driven variance of sea level can be attributed to this oscillation, which is nearly uniform in phase and amplitude across the entire basin. The oscillation has periods ranging from 10 days to several years and has a magnitude as large as 10 cm. The model suggests that the fluctuations are driven by winds at the Strait of Gibraltar and its neighboring region, including the Alboran Sea and a part of the Atlantic Ocean immediately to the west of the strait. Winds in this region force a net mass flux through the Strait of Gibraltar to which the Mediterranean Sea adjusts almost uniformly across its entire basin with depth-independent pressure perturbations. The wind-driven response can be explained in part by wind setup; a near-stationary balance is established between the along-strait wind in this forcing region and the sea level difference between the Mediterranean Sea and the Atlantic Ocean. The amplitude of this basin-wide wind-driven sea level fluctuation is inversely proportional to the setup region’s depth but is insensitive to its width including that of Gibraltar Strait. The wind-driven fluctuation is coherent with atmospheric pressure over the basin and contributes to the apparent deviation of the Mediterranean Sea from an inverse barometer response.


2017 ◽  
Vol 13 (8) ◽  
pp. 854-861 ◽  
Author(s):  
Joanna Pilczynska ◽  
Silvia Cocito ◽  
Joana Boavida ◽  
Ester A. Serrão ◽  
Henrique Queiroga

ZooKeys ◽  
2018 ◽  
Vol 771 ◽  
pp. 15-40 ◽  
Author(s):  
Hiroshi Yamasaki ◽  
Katarzyna Grzelak ◽  
Martin V. Sørensen ◽  
Birger Neuhaus ◽  
Kai Horst George

Kinorhynchs rarely show a wide distribution pattern, due to their putatively low dispersal capabilities and/or limited sampling efforts. In this study, a new kinorhynch species is described,Echinoderespterussp. n., which shows a geographically and bathymetrically wide distribution, occurring on the Karasik Seamount and off the Svalbard Islands (Arctic Ocean), on the Sedlo Seamount (northeast Atlantic Ocean), and on the deep-sea floor off Crete and on the Anaximenes Seamount (Mediterranean Sea), at a depth range of 675–4,403 m. The new species is characterized by a combination of middorsal acicular spines on segments 4–8, laterodorsal tubes on segment 10, lateroventral tubes on segment 5, lateroventral acicular spines on segments 6–9, tufts of long hairs rising from slits in a laterodorsal position on segment 9, truncated tergal extensions on segment 11, and the absence of any type-2 gland cell outlet. The specimens belonging to the populations from the Arctic Ocean, the Sedlo Seamount, and the Mediterranean Sea show morphological variation in the thickness and length of the spines as well as in the presence/absence of ventromedial sensory spots on segment 7. The different populations are regarded as belonging to a single species because of their overlapping variable characters.


Sign in / Sign up

Export Citation Format

Share Document