scholarly journals Elevation of MPF and MAPK gene expression, GSH content and mitochondrial distribution quality induced by melatonin promotes porcine oocyte maturation and development in vitro

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9913
Author(s):  
Zimo Zhao ◽  
Ling Yang ◽  
Dan Zhang ◽  
Zi Zheng ◽  
Ning Li ◽  
...  

The MPF and MAPK genes play crucial roles during oocyte maturation processes. However, the pattern of MPF and MAPK gene expression induced by melatonin (MT) and its correlation to oocyte maturation quality during the process of porcine oocyte maturation in vitro remains unexplored. To unravel it, in this study, we cultured the porcine oocytes in maturation medium supplemented with 0, 10−6, 10−9, and 10−12 mol/L melatonin. Later, we analyzed the MPF and MAPK gene expression levels by RT-PCR and determined the maturation index (survival and maturation rate of oocytes). The GSH content in the single oocyte, and cytoplasmic mitochondrial maturation distribution after porcine oocyte maturation in vitro was also evaluated. We also assessed the effects of these changes on parthenogenetic embryonic developmental potential. The oocytes cultured with 10−9mol/L melatonin concentration showed higher oocyte maturation rate, and MPF and MAPK genes expression levels along with better mitochondrial distribution than the 0, 10−6, and 10−12 mol/L melatonin concentrations (p < 0.05). No significant difference was observed in the survival rates when the oocytes were cultured with different melatonin concentrations. The expression of the MPF gene in the oocytes cultured with 10−6 mol/L melatonin was higher than with 10−12 and 0 mol/L melatonin, and the expression of the MAPK gene in 10−6 and 10−12 group was higher than the control (p < 0.05). As far as the embryonic developmental potential is concerned, the cleavage and blastocyst rate of oocytes cultured with 10−6 and 10−9 mol/L melatonin was significantly higher than the 10−12 mol/L melatonin and control. In conclusion, 10−9–10−6 mol/L melatonin significantly induced the MPF and MAPK gene expression; besides, it could also be correlated with GSH content of single oocyte, mitochondrial maturation distribution, and the first polar body expulsion. These changes were also found to be associated with parthenogenetic embryo developmental potential in vitro.

2017 ◽  
Vol 29 (9) ◽  
pp. 1667 ◽  
Author(s):  
M. Arias-Álvarez ◽  
R. M. García-García ◽  
J. López-Tello ◽  
P. G. Rebollar ◽  
A. Gutiérrez-Adán ◽  
...  

In vivo-matured cumulus–oocyte complexes are valuable models in which to assess potential biomarkers of rabbit oocyte quality that contribute to enhanced IVM systems. In the present study we compared some gene markers of oocytes and cumulus cells (CCs) from immature, in vivo-matured and IVM oocytes. Moreover, apoptosis in CCs, nuclear maturation, mitochondrial reallocation and the developmental potential of oocytes after IVF were assessed. In relation to cumulus expansion, gene expression of gap junction protein, alpha 1, 43 kDa (Gja1) and prostaglandin-endoperoxide synthase 2 (Ptgs2) was significantly lower in CCs after in vivo maturation than IVM. In addition, there were differences in gene expression after in vivo maturation versus IVM in both oocytes and CCs for genes related to cell cycle regulation and apoptosis (V-Akt murine thymoma viral oncogene homologue 1 (Akt1), tumour protein 53 (Tp53), caspase 3, apoptosis-related cysteine protease (Casp3)), oxidative response (superoxide dismutase 2, mitochondrial (Sod2)) and metabolism (glucose-6-phosphate dehydrogenase (G6pd), glyceraldehyde-3-phosphate dehydrogenase (Gapdh)). In vivo-matured CCs had a lower apoptosis rate than IVM and immature CCs. Meiotic progression, mitochondrial migration to the periphery and developmental competence were higher for in vivo-matured than IVM oocytes. In conclusion, differences in oocyte developmental capacity after IVM or in vivo maturation are accompanied by significant changes in transcript abundance in oocytes and their surrounding CCs, meiotic rate, mitochondrial distribution and apoptotic index. Some of the genes investigated, such as Gja1, could be potential biomarkers for oocyte developmental competence in the rabbit model, helping improve in vitro culture systems in these species.


2017 ◽  
Vol 29 (1) ◽  
pp. 195 ◽  
Author(s):  
J.-Y. Park ◽  
H.-J. Park ◽  
J.-W. Kim ◽  
S.-Y. Park ◽  
S.-G. Yang ◽  
...  

Unfolding protein response (UPR) is a defence mechanism during endoplasmic reticulum (ER) stress in mammalian cells. Especially, UPR genes and regulation of reactive oxygen species is involved in ER stress response on porcine oocyte maturation in vitro. Some studies have shown that melatonin treatment results in reducing oxidative stress, a protective function of free radical damage in oocyte maturation and embryo development. Also, melatonin has an important role in reducing reactive oxygen species and ER stress. However, it is unknown how the changes of UPR genes expression levels are affected the porcine oocyte maturation. In addition, there are no reports about ER stress recovery mechanism by melatonin during porcine oocyte maturation. Here, we investigated the UPR signal genes (Bip/Grp78, Atf4, p90/p50Atf6, and Xbp1) and ER-stress mediated apoptosis factors (Chop and Cleaved caspase 3) in porcine oocyte maturation in vitro. Expression of Chop and Cleaved caspase 3 mRNA levels were significantly increased (P < 0.01) in matured oocytes (metaphase II; 44 h) in vitro. Porcine oocytes were cultured in maturation medium with ER stress inducer, tunicamycin (Tm), and supplemented with various concentrations (1, 5, and 10 μg mL−1) of Tm for 0 to 44 h. Our results indicated that the proportion of matured oocytes was significantly decreased in Tm-treated groups in a dose-dependent manner (60.1 ± 1.3, 46.5 ± 2.1, and 38.9 ± 5.1% at 1, 5, and 10 μg mL−1 of Tm) compared with the control group (76.6 ± 1.9%). Likewise, mRNA expression of UPR regulator genes (Grp78/Bip, Aft4, Xbp1, Chop, and Cleaved caspase 3) was decreased by melatonin treatment (0.1 μM, 22–44 h) after pretreatment of Tm (5 μg mL−1, 0–22 h) during oocyte maturation. Our results demonstrated that the roles of melatonin as UPR signaling regulator for reducing ER stress are essential for promotion of porcine oocyte maturation and cumulus cell expansion of cumulus-oocyte complex. Moreover, the current study was initiated to confirm a functional link between effect of melatonin and regulating of UPR signaling in porcine oocytes maturation. These results suggest that melatonin improve the oocyte maturation and cumulus cells expansion by regulating of UPR signal genes against the ER stress during the porcine in vitro maturation process. This work was supported by grants from the Next-Generation BioGreen 21 Program (PJ01117604) and the Bio-industry Technology Development Program (316037–04–1-HD020) through the Rural Development Administration, the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.


2020 ◽  
Vol 21 (10) ◽  
pp. 3692 ◽  
Author(s):  
Pil-Soo Jeong ◽  
Sanghoon Lee ◽  
Soo-Hyun Park ◽  
Min Ju Kim ◽  
Hyo-Gu Kang ◽  
...  

Parabens are widely used in personal care products due to their antimicrobial effects. Although the toxicity of parabens has been reported, little information is available on the toxicity of butylparaben (BP) on oocyte maturation. Therefore, we investigated the effects of various concentrations of BP (0 μM, 100 μM, 200 μM, 300 μM, 400 μM, and 500 μM) on the in vitro maturation of porcine oocytes. BP supplementation at a concentration greater than 300 μM significantly reduced the proportion of complete cumulus cell expansion and metaphase II oocytes compared to the control. The 300 μM BP significantly decreased fertilization, cleavage, and blastocyst formation rates with lower total cell numbers and a higher rate of apoptosis in blastocysts compared to the control. The BP-treated oocytes showed significantly higher reactive oxygen species (ROS) levels, and lower glutathione (GSH) levels than the control. BP significantly increased the aberrant mitochondrial distribution and decreased mitochondrial function compared to the control. BP-treated oocytes exhibited significantly higher percentage of γ-H2AX, annexin V-positive oocytes and expression of LC3 than the control. In conclusion, we demonstrated that BP impaired oocyte maturation and subsequent embryonic development, by inducing ROS generation and reducing GSH levels. Furthermore, BP disrupted mitochondrial function and triggered DNA damage, early apoptosis, and autophagy in oocytes.


Zygote ◽  
2006 ◽  
Vol 14 (3) ◽  
pp. 189-199 ◽  
Author(s):  
Inger Faerge ◽  
Frantisek Strejcek ◽  
Jozef Laurincik ◽  
Detlef Rath ◽  
Heiner Niemann ◽  
...  

SummaryFollicular fluid meiosis-activating sterol (FF-MAS) has been isolated from the follicular fluid (FF) of several species including man. FF-MAS increases the quality of in vitro oocyte maturation, and thus the developmental potential of oocytes exposed to FF-MAS during in vitro maturation is improved. The aim of the present study was to investigate the effects of FF-MAS on porcine oocyte maturation and pronucleus formation in vitro. Porcine cumulus–oocyte complexes (COCs) were isolated from abattoir ovaries and in vitro matured for 48 h in NCSU 37 medium supplemented with 1 mg/l cysteine, 10 ng/ml epidermal growth factor and 50 μM 2-mercaptoethanol with or without 10% porcine follicular fluid (pFF). For the first 22 h, 1 mM db-cAMP and 10 I.E PMSG/hCG was added. The medium was supplemented with 1 μM, 3 μM, 10 μM, 30 μM or 100 μM FF-MAS dissolved in ethanol. After maturation the COCs were denuded mechanically using a fine glass pipette under constant pH and in vitro fertilized with fresh semen (5 × 105 spermatozoa/ml). The presumptive zygotes were evaluated 18 h after fertilization. The addition of pFF increased the monospermic as well as the polyspermic penetration of oocytes. In the absence of pFF, the addition of FF-MAS decreased the polyspermic penetration rate, whereas FF-MAS in combination with pFF decreased monospermic and increased polyspermic penetration. The degeneration rate of ova decreased in the presence of FF-MAS irrespective of the presence or absence of pFF. In the absence of pFF, FF-MAS at 3–10 μM increased the number of zygotes with advanced maternal pronuclear stages. In supraphysiological doses, i.e. 30–100 μM, FF-MAS dose-dependently and reversibly inhibited nuclear maturation in the absence of pFF.


2017 ◽  
Vol 29 (5) ◽  
pp. 876 ◽  
Author(s):  
Denise Laskowski ◽  
Ylva Sjunnesson ◽  
Patrice Humblot ◽  
Marc-André Sirard ◽  
Göran Andersson ◽  
...  

Metabolic imbalance impairs fertility, because changes in concentrations of metabolites and hormones in the blood and follicular fluid create an unfavourable environment for early embryonic development. Insulin is a key metabolic hormone known for its effects on fertility: insulin concentrations are increased during energy balance disturbances in diabetes or metabolic syndrome. Still, insulin is frequently used at supraphysiological concentrations for embryo in vitro culture with unknown consequences for the developmental potential of the offspring. In the present study we investigated the effects of insulin exposure during in vitro bovine oocyte maturation on developmental rates, embryo quality and gene expression. Supplementation of the maturation media with insulin at 10 or 0.1 µg mL–1 decreased blastocyst rates compared with an insulin-free control (19.8 ± 1.3% and 20.4 ± 1.3% vs 23.8 ± 1.3%, respectively; P < 0.05) and led to increased cell numbers (nearly 10% more cells on Day 8 compared with control; P < 0.05). Transcriptome analysis revealed significant upregulation of genes involved in lipid metabolism, nuclear factor (erythroid-derived 2)-like 2 (NRF2) stress response and cell differentiation, validated by quantitative polymerase chain reaction. To conclude, the results of the present study demonstrate that insulin exposure during in vitro oocyte maturation has a lasting effect on the embryo until the blastocyst stage, with a potential negative effect in the form of specific gene expression perturbations.


Sign in / Sign up

Export Citation Format

Share Document