scholarly journals Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods

Author(s):  
Jae-Hyun Kim ◽  
Seung-Hyun Ha ◽  
Seonho Cho
Author(s):  
Myung-Jin Choi ◽  
Min-Geun Kim ◽  
Seonho Cho

We developed a shape-design optimization method for the thermo-elastoplasticity problems that are applicable to the welding or thermal deformation of hull structures. The point is to determine the shape-design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of curved surfaces are selected as the design parameters. The shell finite elements, forward finite difference sensitivity, modified method of feasible direction algorithm and a programming language ANSYS Parametric Design Language in the established code ANSYS are employed in the shape optimization. The objective function is the weighted summation of differences between the deformed and the target geometries. The proposed method is effective even though new design variables are added to the design space during the optimization process since the multiple steps of design optimization are used during the whole optimization process. To obtain the better optimal design, the weights are determined for the next design optimization, based on the previous optimal results. Numerical examples demonstrate that the localized severe deviations from the target design are effectively prevented in the optimal design.


2020 ◽  
Vol 10 (7) ◽  
pp. 2223 ◽  
Author(s):  
J. C. Hsiao ◽  
Kumar Shivam ◽  
C. L. Chou ◽  
T. Y. Kam

In the design optimization of robot arms, the use of simulation technologies for modeling and optimizing the objective functions is still challenging. The difficulty is not only associated with the large computational cost of high-fidelity structural simulations but also linked to the reasonable compromise between the multiple conflicting objectives of robot arms. In this paper we propose a surrogate-based evolutionary optimization (SBEO) method via a global optimization approach, which incorporates the response surface method (RSM) and multi-objective evolutionary algorithm by decomposition (the differential evolution (DE ) variant) (MOEA/D-DE) to tackle the shape design optimization problem of robot arms for achieving high speed performance. The computer-aided engineering (CAE) tools such as CAE solvers, computer-aided design (CAD) Inventor, and finite element method (FEM) ANSYS are first used to produce the design and assess the performance of the robot arm. The surrogate model constructed on the basis of Box–Behnken design is then used in the MOEA/D-DE, which includes the process of selection, recombination, and mutation, to optimize the robot arm. The performance of the optimized robot arm is compared with the baseline one to validate the correctness and effectiveness of the proposed method. The results obtained for the adopted example show that the proposed method can not only significantly improve the robot arm performance and save computational cost but may also be deployed to solve other complex design optimization problems.


2019 ◽  
Vol 189 ◽  
pp. 48-61 ◽  
Author(s):  
Jin-Xing Shi ◽  
Sho Kozono ◽  
Masatoshi Shimoda ◽  
Masahiro Takino ◽  
Daiki Wada ◽  
...  

1995 ◽  
Vol 31 (6) ◽  
pp. 3569-3571 ◽  
Author(s):  
Xie Dexin ◽  
Bai Baodong ◽  
Yao Yingying ◽  
Wang Fengxiang ◽  
O.A. Mohammed

Sign in / Sign up

Export Citation Format

Share Document